ガートナーの 2021 年人工知能ハイプ サイクルの 4 つのトレンドが、短期的な AI イノベーションを推進しています。
これらの 4 つのトレンドには、責任ある AI、小規模で幅広いデータ戦略、AI プラットフォームの運用化、データ、モデル、コンピューティング リソースの効率的な使用が含まれます。具体的には、次のとおりです。 1. 責任あるAIガートナーは、2023年までにすべてのAI開発およびトレーニング担当者が責任あるAIの専門知識を持たなければならないと予測しています。 2. 小規模かつ幅広いデータデータは AI イニシアチブを成功させるための基盤です。小規模かつ幅広いデータ戦略により、より強力な分析と人工知能が可能になり、組織のビッグデータへの依存が軽減され、より豊富で完全な状況認識が提供されます。 ガートナーによると、2025年までに70%の組織がビッグデータから小規模で幅広いデータに重点を移さざるを得なくなり、分析ツールにさらに多くのコンテキストが提供され、人工知能用のデータ需要が減少すると予想されています。 3. AIプラットフォームの運用化ビジネス変革を促進するために AI を使用することの緊急性と重要性により、AI プラットフォームの運用化の需要が高まっています。これは、AI ソリューションが企業全体の問題を解決するために信頼できるものとなるよう、AI プロジェクトをコンセプトから実稼働に移行することを意味します。 4. 資源の有効活用AI の導入に関わるデータ、モデル、コンピューティング リソースの複雑さと規模を考えると、AI イノベーションにはこれらのリソースを最も効率的に使用することが求められます。マルチエクスペリエンス、複合AI、生成AI、トランスフォーマーは、さまざまなビジネス上の問題をより効率的に解決できるため、AI市場で注目を集めています。 |
<<: グラフ最適化のためのエンドツーエンドの転送可能な深層強化学習
>>: AI によって雇用が失われる場合、バックアップ プランはありますか?
DriveLM は、データセットとモデルで構成される言語ベースのドライブ プロジェクトです。 Dri...
世界初の Vision Pro が店から持ち出された瞬間、会場全体が興奮に包まれました。この瞬間は歴...
2017年7月8日、5日間にわたる第2回Taobao Maker Festivalが杭州国際博覧セン...
大型モデルはどんどん「人間らしく」なってきていますが、本当にそうなのでしょうか?現在、Nature ...
クラウドとインテリジェンスの統合は、中国企業が AI アプリケーションの実装の「最後の 1 マイル」...
チャットボットが大きなトレンドであることは間違いありません。ますます多くの大手ブランドが、アプリのタ...
近年、OpenAI の GPT-3 などの大規模言語モデル (LLM) は、人工知能の分野で大きな進...
[[427083]] 9月29日、中国サイバースペース管理局は他の8つの中央部門とともに、「インタ...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
中国国家郵政局が2020年10月に郵便業界標準「ドローン速達サービス仕様」について通知したことを覚え...
最近、2020年世界人工知能会議が中国上海で開催されました。各国の専門家らがオンラインで議論し、人工...