ほとんどの人にとって、あるオブジェクトを別のオブジェクトの上に重ねることは簡単な作業です。しかし、最も洗練されたロボットでさえ、一度に複数のタスクを処理するのは困難です。これは、積み重ねには、さまざまな種類の物体と対話する能力を含む、さまざまな範囲の運動能力、知覚能力、分析能力が必要になるためです。この作業の複雑さにより、ロボット工学の分野では大きな課題となっています。 DeepMind の研究者チームは、ロボットによるスタッキングの最先端技術を進歩させるには新たなベンチマークが必要であると判断しました。 2021年のロボット学習会議(CoRL 2021)で発表される論文では、ロボットがさまざまな物体をつかみ、それらを互いにバランスよく重ねる方法を学習できるRGBスタッキングが紹介されています。スタッキングタスクのベンチマークはすでに文献に存在しますが、研究者らは、この研究がユニークなのは、使用された被験者の多様性と、「発見」を検証するために行われた評価であると主張しています。研究者らは論文の中で、シミュレーションデータと実際のデータの組み合わせが「複数オブジェクトの操作」の学習に使用できることを示していると述べている。 「他の研究者をサポートするために、シミュレーション環境のバージョンをオープンソース化し、リアルなロボット RGB スタッキング環境を構築するための設計を、RGB オブジェクト モデルと 3D プリント用の情報とともに公開しています」と研究者らは述べています。「ロボット研究のためのライブラリとツールも、より広範囲にオープンソース化しています。」 DeepMind の研究者によると、学習プロセスにより、ロボットは複数のオブジェクト セットでトレーニングすることで一般的なスキルを習得できるようになります。 RGB スタッキングは、ロボットが各オブジェクトをつかんで積み重ねる方法を定義する、つかみ特性と積み重ね特性を意図的に変更し、ロボットに単純なピックアンドプレース戦略を超えた動作を強制します。 ロボットがアイテムの積み重ねや掴みに熟練するようになるにつれ、一部の専門家はこの種の自動化が製造業の新たな成長の波を引き起こす可能性があると考えている。 |
<<: すべてを支配する 1 つのアルゴリズム! DeepMind はニューラル アルゴリズム推論を提案しています。ディープラーニングと従来のアルゴリズムの融合により、再び奇跡が起こるでしょうか?
人工知能(AI)は、新薬の発見から新しい数学の問題の解決まで、あらゆることを人間が行うのに役立ってお...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
[[425546]]エリック・ルセロ博士最近、Google Quantum AIのチーフエンジニアで...
第2回中国国際輸入博覧会が11月10日に成功裏に終了した。医療機器と医薬健康展示エリアでは、世界有数...
[[121931]]この記事の参考文献: Li Yunqing 他著「データ構造 (C 言語版)」、...
今日の物語の主人公は、サンジーヴ・アローラとアニルド・ゴヤルという二人の科学者です。アローラ氏はプリ...
ノア著制作:51CTO テクノロジースタック(WeChat ID:blog)最近、マイクロソフトは、...
全米経済研究所が実施した最近の調査によると、ChatGPT のような AIGC を導入すると、従業員...
7月14日、国際的に権威のある調査機関IDC(International Data Corporat...
[[221188]]将来、人工知能が 380 万人以上の銀行員の仕事を全て置き換える日が来るのでし...
人工知能は、すべての人の生活に欠かせないものとなっています。 YouTube のおすすめなどの単純な...
ビッグデータダイジェスト制作著者: カレブ氷は地球の盾とも言え、余分な熱を宇宙に反射して地球の地層と...
【51CTO.com クイック翻訳】 [[425095]]ビジネス マーケティングの原動力と、顧客体...