2022 年のビジネス インテリジェンスの 7 つのトレンド

2022 年のビジネス インテリジェンスの 7 つのトレンド

ビジネス インテリジェンスは AI に置き換えられることはありません。BI は今でも存在し、役立っています。使いやすくなり、より多くの従業員に拡張され、クラウドに移行し、より広範な ERP および CRM ソフトウェア スイートに組み込まれ、現在では AI と機械学習も組み込まれています。

IDCが提供した2020年の市場シェアデータによると、世界のビジネスインテリジェンスおよび分析市場は総額192億米ドルとなり、流行に関連した経済混乱にもかかわらず5.2%の健全な成長を遂げました。企業がデジタル変革に注力し、よりスマートな方法でデータを活用してビジネスを推進するにつれて、BI の成長が加速すると予想されます。

BARCリサーチセンターの創設者兼CEOであるカーステン・バンゲ氏は、COVID-19パンデミック以前は、BIは投資に見合わないレガシーテクノロジーと見なされていたと述べています。状況は劇的に変化しており、新たな調査結果によると、企業はサプライ チェーン、急速に変化する消費者行動、自社のビジネス プロセスについてより深い洞察を得る必要性を認識し、再び BI に注目し始めています。

2022 年以降のビジネス インテリジェンスの主要なトレンドをいくつか紹介します。

人工知能と機械学習はさらなる可能性をもたらす

人工知能における最も重要な開発動向は、人工知能と機械学習の統合です。 「拡張分析の新時代」が始まっており、次世代の BI ソフトウェアを大衆に提供するために必要な AI 分析機能はまだ初期段階にありますが、歴史的な傾向から、この世代の BI ソフトウェアは 10 年以内に主流になると予想されています。

拡張 BI (AI で強化された従来の BI) は、平均的なビジネス ユーザーを市民データ サイエンティストに変える可能性を秘めています。目標は、データ サイエンティスト以外のユーザーが予測、予測分析、異常検出、その他の BI 関連機能を「ワンクリック」で実行できるようにすることです。

機械学習システムはバックグラウンドで実行され、「知らないことが分からない」という問題を解決できます。機械学習システムは、データ内の興味深いパターンを識別し、他の方法では決して不可能な方法でエンドユーザーに警告することができます。

拡張分析とは、機械学習と人間の能力を組み合わせ、創造的な問題解決と比類のないパターン認識を組み合わせて、両方の長所を最大限に活用する能力を指します。主な目標は、分析と BI をよりアクセスしやすくし、一般ユーザーの参入障壁を下げながら、上級ユーザーの効率と効果を高めることです。

ポストエピデミック時代にクラウドアプリケーションが爆発的に普及する

BI ソフトウェアのクラウド導入は以前からトレンドとなっていましたが、COVID-19 パンデミックにより従業員が在宅勤務を余儀なくされ、IT 部門が重要なビジネス アプリケーションへのリモート アクセスを提供する必要に迫られたことで、クラウド導入は確実に加速しました。

新しい BI 導入の 50% はクラウドで行われており、毎年着実に成長しています。クラウドベースの BI の利点には、リモート ユーザーへのアクセス性、スケーラビリティ、弾力性、展開のスピードなどがあります。企業がバックアップやアプリケーションの実行のために大規模なデータセットをクラウドに移行することに慣れてくると、データウェアハウスやデータ分析もクラウドに移行する可能性が高まります。分析リーダーは、データに分析をもたらすことを好み、その逆は好みません。

自然言語処理がさらに一歩前進

データ サイエンティストでない限り、適切なクエリを作成するのは困難です。解決策は、BI システムに自然言語処理を組み込み、一般の従業員が質問するだけで回答が得られるようにすることです。自然言語処理により、既存の BI トレーニングを受けた従業員が BI ツールをより効果的に使用できるようになるだけでなく、企業が組織全体で BI をより深く広く拡張することも可能になります。

自然言語処理は興味深いトレンドですが、まだ完全に実現されていないと言っても過言ではありません。自然言語を正確なクエリに翻訳するのは非常に困難であり、最初の試みで正しい答えが得られる可能性は低いです。 Google 検索を行ったときと同じように、何百もの回答が得られるかもしれません。自然言語システムには、まだかなりの調整が必要です。

BIはCRMおよびERPプラットフォームに組み込まれています

買収または社内開発を通じて、CRM および ERP ベンダーは BI を自社のプラットフォームに組み込んでいます。利点は、BI が独立した接続されていないプロセスからビジネス プロセス ワークフローの不可欠な部分へと進化することです。組み込み BI は、企業がビジネス プロセスに関連する手順を自動化するのに役立ち、速度とパフォーマンスの向上につながります。

ストーリーテリングを通じて情報を伝える

従来の BI では、システムはカラフルなグラフが満載のレポートやダッシュボードを生成しますが、このプレゼンテーションは見た目は美しいものの、技術に詳しくないユーザーに情報を提示する最善の方法ではない、または最も役立つ方法ではない可能性があります。 「非常に複雑なビジュアル」に対抗するトレンドの1つは、データの大量投入よりもストーリーテリングへの移行だとバンジ氏は言う。

BI ベンダーは、「情報設計」と呼ばれる原則を使用して、生のデータだけでなく次に何をすべきかについてのアドバイスも表示し、ユーザーが特定の問題や状況に適切に対処できるようにプレゼンテーションを合理化しています。このタイプの物語には、魅力的なイメージに合わせてテキストによるナレーションが含まれる可能性が高くなります。

BIは運用中です

従来の BI では、毎週や毎月などの固定スケジュールでレポートが配信されます。しかし、今日の競争の激しいビジネス環境では、意思決定をリアルタイムで行う必要があるため、これではもはや十分ではありません。運用 BI (運用インテリジェンス (OI) とも呼ばれる) を使用すると、消費者の行動やサプライ チェーンの混乱など、さまざまなソースからのデータを収集して分析できます。

BI システムは、特定の機能にさらに多くのリソースを割り当てたり、急速に変化するビジネス状況に対応したりするなど、迅速な意思決定のための推奨事項を提供できます。運用 BI を使用すると、ダッシュボードを定期的に (1 時間ごとなど) 自動的に更新でき、システムはアラートをトリガーして、対処する必要がある問題や活用できる新しい機会があることを運用チームに通知できます。

BIを成功させるには事前の作業が必要

BI ツール自体はかなり成熟していますが、必要な準備が整っていないために BI の導入に苦労している企業が多くあります。技術は存在するが、障害は人とプロセスの側面にある。企業はデータ主導の文化を構築し、従業員をトレーニングする必要があります。

BARC の新しい調査研究によると、回答者に 2021 年の優先事項をランク付けするよう依頼したところ、データ品質管理とデータ検出がトップにランクされました。高度な分析と機械学習は 11 位にランクされていますが、これは企業が AI に興味を持っていないことを意味するものではありません。つまり、企業は、基盤となる高品質でアクセス可能なデータがまだ完全に実装されていない状態で、機械学習のメカニズムを導入するのに苦労していることになります。企業は、高度な方法に焦点を移す前に、基本に立ち返り、データの使用と管理の基礎に重点を置いているようです。

Everson 氏は CIO に対して、「今すぐエンタープライズ グレードのプラットフォームを導入する」ことをアドバイスしています。これは、既存の BI プラットフォームの古いバージョンを更新するか、新しいベンダーと連携することを意味します。現在、分析に使用できるデータは 20 ~ 30% のみで、通常のエンタープライズ データ ウェアハウスに取り込まれています。 BI は、CIO が成功するために必要なすべてのものへの投資です。

<<:  デジタルマーケティングにおけるAI革命

>>:  5Gが企業に与える影響

ブログ    

推薦する

ロビン・リー、馬化騰、ジャック・マーがAIについて語る: 世界は劇的に変化しています。心配するのではなく、責任を取るべきです。

[[333020]]ロビン・リー:業界の人々はAIに大きな可能性があることを知っており、悲観的な時...

...

2020 年以降のソフトウェア開発のトレンド

今後8年間の8つの重要なトレンドを予測[[322666]] UnsplashのHarpal Sing...

ビッグデータが急成長し、我が国のクラウドコンピューティングは「黄金の窓」の時代を迎えている

[[206431]]クラウドコンピューティングは、電力網、交通網、インターネットと同様の「国家インフ...

グリーンAIが気候変動の影響にどう対処できるか

機械学習などの計算集約型テクノロジーの開発には、大きな二酸化炭素排出量が伴い、気候変動の一因となりま...

OpenAI、開発者向けGPTチャットボットAPIのメジャーアップデートを発表、価格を値下げ

OpenAI は本日、大規模言語モデル API (GPT-4 および gpt-3.5-turbo を...

...

量子コンピューティング + 人工知能 - これが未来のテクノロジーの最大のホットスポットです!

[[219586]] 1990年代初頭、ウィチタ州立大学の物理学教授エリザベス・バーマンが量子物理...

アルゴリズム実践者が知っておくべき TensorFlow のヒント 10 選

導入これらを習得することで、モデルをより効率的にして開発効率を向上させることができます。 [[343...

9 つのディープラーニング アルゴリズム、ご存知ですか?

[[439436]] 1フェーズまたは2フェーズのアルゴリズム2 段階アルゴリズムには、候補ボック...

...

Pythonを使用して独自の音声認識システムをトレーニングします。この操作の波は安定しています

近年、音声認識技術は急速に発展しており、携帯電話のSiri音声インテリジェントアシスタント、Micr...

AI 駆動型スマートビルは将来のトレンドになるでしょうか?

人工知能 (AI) は、建物の管理と制御の方法に革命をもたらし、これまで以上に効率的でコスト効率の高...

Llama2がオープンソース化された後、国内の大型モデルはどのような展開を見せるのでしょうか?

7 月 19 日、オープン ソース コミュニティの最も強力な大規模モデルが Llama から Ll...