モデル推論が5〜20倍向上します。1行のコードで複数のDLコンパイラをテストできます。ハードウェアを理解していなくてもこのライブラリを使用できます。

モデル推論が5〜20倍向上します。1行のコードで複数のDLコンパイラをテストできます。ハードウェアを理解していなくてもこのライブラリを使用できます。

最近、reddit の投稿がネットユーザーの間で大きな議論を呼びました。投稿の主な内容は、「AI モデルの最適化がいかに簡単かを知っている人はほとんどいません。数行のコードを追加するだけで、モデルの推論速度を 5 ~ 20 倍に上げることができます。」というものでした。

ポスターを掲げるのは、スタートアップ企業 Nebuly の共同設立者兼 COO であるエミール・コートハウド氏です。コートハウド氏は、現在の開発者は AI、データセットのクリーニング、モデルのトレーニングには熟練しているものの、ハードウェア、コンパイラ、コンピューティング、クラウド コンピューティングなどの側面に関する知識が不足していると考えています。その結果、開発者は適切なハードウェアを選択することの重要性を認識せずに、ソフトウェアのパフォーマンスの向上に多くの時間を費やすことになります。

この問題は長い間 Courthoud 氏を悩ませてきました。そこで彼と Nebuly の数人の友人 (全員 MIT、ETH、EPFL 出身) は、DL コンパイラー技術を採用し、ハードウェアについて何も知らない開発者でもアクセスできる nebullvm というオープン ソース ライブラリに多大な労力を費やしました。このライブラリは、すべてのオープン ソース AI コンパイラーを同じ使いやすいインターフェイスに統合することを目指しています。

Nebullvm はどのように機能しますか?全体的には、さまざまな DL (ディープラーニング) コンパイラをテストし、ユーザーに最適なものを選択することで、ユーザーが使用する AI モデルをマシン (CPU、GPU など) と最適に結合し、モデルを約 5 ~ 20 倍高速化し、わずか数行のコードで完成させることができます。

プロジェクトアドレス: https://github.com/nebuly-ai/nebullvm

Nebullvm プロジェクトの紹介

ユーザーは、次の状況で Nebullvm ライブラリを使用することを選択できます。

  • AI モデルの応答時間を高速化したい。
  • 市場にあるすべての DL コンパイラをテストするのではなく、特定のアプリケーションに最適なコンパイラを知りたいだけです。
  • 私は複雑な問題を単純化するのが好きだし、ほんの数行のコードでどの DL コンパイラが自分にとって最適かを知りたいのです。

プロジェクトの作成者は、非常に使いやすいものを設計しました。DL モデルを入力するだけで、ハードウェアに一致する最適なモデル バージョンが得られます。

現在、このプロジェクトは PyTorch や TensorFlow などのフレームワークをサポートしており、まもなく Hugging Face もサポートする予定です。サポートされている DL コンパイラには、OpenVINO、TensorRT、TVM が含まれ、Rammer と MLIR も近々サポートされる予定です。

nebullvm をインストールするには、ソース コードを使用してインストールできます。git を使用してインストールする方法は次のとおりです。

 git クローンhttps://github.com/nebuly-ai/nebullvm.git

次にリポジトリに移動し、pip を使用して nebullvm をインストールします。

 cd ネブルlvm
pip をインストールします

PyPiのインストール: nebullvmをインストールする最も簡単な方法は、pipを使用して次のコードを実行することです。

 pip インストールnebullvm

自動インストールの方法は次のとおりです。この方法では、nebullvm でサポートされているすべての DL コンパイラを自動的にインストールできます。

 python - c "nebullvm をインポート"

ただし、自動インストールを回避したい場合は、次の方法を使用できます。

 エクスポートNO_COMPILER_INSTALLATION = 1

または、コマンドラインから追加します。

 インポートOS
os . environ [ "NO_COMPILER_INSTALLATION" ] = "1"

nebullvm をインストールしたら、使用できます。次のコードは、nebullvm を使用して pytorch モデルを最適化する例を示しています。

 >>> トーチをインポート
>>> torchvision.models モデルとしてインポートします
>>> nebullvm からoptimize_torch_model をインポートします
>>> モデル= models.efficientnet_b0 ( )
>>> bs入力サイズ= 1 、[( 3256256 )]
>>> save_dir = "."
>>> 最適化モデル= 最適化トーチモデル(
... モデルbatch_size = bsinput_sizes = input_sizessave_dir = save_dir
...
>>> x = torch.randn (( bs , * input_sizes [ 0 ]) )
>>> res = 最適化されたモデル( x )


<<:  AIファースト戦略に移行する5つの方法

>>:  清華大学 IEEE 論文: 自動運転の判断を支援する新しいトレーニング方法を使用して「路側干渉」を排除

ブログ    

推薦する

人工知能の急速な発展により、多くの人が失業し、自立できなくなるのでしょうか?

近年、人工知能が話題となっており、人工知能が人類にもたらす変化について多くの人が議論しています。多く...

Python の例を使用して TensorFlow を始めるにはどうすればよいでしょうか?

[[223516]]この記事に付属するコードは、ここからダウンロードできます。 https://g...

シスコが新たな調査レポートを発表:企業はAIの準備に大きなギャップを抱えている

ニュースハイライト:中国企業の98%は、過去6か月間にAI技術導入の緊急性が高まったと回答した。戦略...

AI教育改革の障害

近年、人工知能技術は最先端技術の代名詞として、徐々に生活の各分野に浸透しており、教育業界も例外ではあ...

...

自動車開発者エコロジー戦略の調印式が成功裏に開催されました

2021年10月20日、国家インテリジェントコネクテッドビークルイノベーションセンター(以下、「イノ...

Javaコードの効率とアルゴリズム設計を最適化してパフォーマンスを向上

Java 開発では、非効率的なコードや不合理なアルゴリズムにより、プログラムのパフォーマンスが低下す...

年収100万ドルでもまだ足りない。AI人材はどれくらい高価なのか?

シリコンバレーで最も隠し切れない秘密の一つは、人工知能の専門家が実際に給料やボーナスでどれくらい稼い...

ニューラル ネットワークの父、ヒントン氏の最新の演説: デジタル インテリジェンスは生物学的インテリジェンスに取って代わるでしょうか?

「人工知能のゴッドファーザー」として知られるジェフリー・ヒントン教授は、英国王立協会 (FRS) ...

ビッグデータの発展は、ソフトウェアエンジニアの漸進的な衰退とアルゴリズムエンジニアの台頭を伴うことになる。

[[190402]]ビッグデータは人類の歴史のどの時代にも存在していましたが、テクノロジーが一定の...

...

AWS は、機械学習の経験がなくても、企業の日常業務を改革し改善する 5 つの新しい機械学習サービスを開始しました。

Amazon Kendra は、自然言語処理やその他の機械学習技術を使用してエンタープライズ検索を...

AI と ROI に関する真実: AI は本当に成果をもたらすことができるのか?

今日、企業組織はこれまで以上に人工知能 (AI) と機械学習 (ML) の可能性を信頼し、投資してい...

人工知能は止められない。アドバンテックのWISE-PaaS 3.0がイノベーションを推進

アドバンテックは、2018年11月1日~2日に開催されたアドバンテックIoT共創サミットにおいて、プ...

偽造AIがまた進化しました!たった一枚の写真で、スピーチと歌のビデオが自動的に生成されます

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...