5秒間のモバイル猫動画でも猫の3Dモデルを再構築できる。Metaは変形した物体をモデリングするための新しいアルゴリズムを提案

5秒間のモバイル猫動画でも猫の3Dモデルを再構築できる。Metaは変形した物体をモデリングするための新しいアルゴリズムを提案

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

ご存知のとおり、猫は液体です。

これは CVer にとっても大きな問題です。2Dビデオから 3D で猫を正確に再構築するにはどうすればよいでしょうか?

多くの場合、3D で再構築されたモデルは実際には液体のプールです。

最近、Meta チームは、猫の正確な 3D 再構築を実現するBANMo (Builder of Animatable 3D Neural Models) を提案しました。

この方法では、特別なセンサーや定義済みのテンプレート形状は必要ありません。猫を撮影した何気ないビデオを使用して 3D 再構築を行うこともできます。

BANMoに関するこの論文は最近CVPR 2022に採択され、著者らは関連コードをオープンソース化しました。

原理

単眼ビデオから自由に動く非剛体オブジェクト(猫など) を再構築することは、制約が非常に少ないタスクであり、次の 3 つの大きな課題に直面します。

対象モデルの 3D 外観と変形を標準空間で表現する方法。

標準空間と各フレーム間のマッピングを見つける方法。

画像内の遠近感、照明の変化、オブジェクトの変形間の 2D 対応を見つける方法。

NRSfM や NeRF などの従来の方法では、表面を正確に再構築できなかったり、撮影角度や物体の剛性に関する要件があったりしました。

これらの問題に対処するために、BANMo はニューラル ハイブリッド スキニングを使用して、ターゲット オブジェクトの変形空間を制限する方法を提供します。

BANMo は、高忠実度の 3D ジオメトリ再構築を実現できます。動的 NeRF 方式と比較して、BANMo でのニューラル ハイブリッド スキンの使用は、カメラ パラメータが不明な場合のポーズの変化や変形をより適切に処理できます。

要約すると、BANMo の鍵となるのは、次の 3 つの技術の融合です。

(1)関節骨格とハイブリッドスキンを使用した古典的な変形形状モデル

(2)勾配ベースの最適化に適したNeRF

(3)ピクセルと関節モデルとの間の対応関係を生成する標準的な埋め込み。

一般的な方法を以下の図に示します。

一連の形状および変形パラメータは、微分可能ボリュームレンダリングフレームワーク(3.1)に従って最適化され、ビデオ観測はピクセルカラー、輪郭、オプティカルフロー、および高レベルの特徴記述子を使用して記述されます。

ニューラルハイブリッドスキンモデル(3.2)を使用して、カメラ空間と標準空間間で3Dポイントを変換します。

ビデオ内のピクセルを登録するために、暗黙の標準埋め込み(3.3)を共同で最適化します。

全体的なアーキテクチャの観点から見ると、BANMo は次の 3 つの部分に分かれています。

1. 形状と外観モデル

この部分では、多層パーセプトロン (MLP) ネットワークを使用して、色や密度などの属性を予測し、カメラの視点変換を学習して大きな変形を処理します。

2. ニューラルハイブリッド皮膚変形モデル

これは、関節の動きを近似するニューラル ハイブリッド スキン モデルに基づいており、オブジェクトの歪みを、それぞれが微分可能かつ可逆な剛体変換の組み合わせとして扱います。

3. 標準化された埋め込みピクセル登録

埋め込みは、正準空間内の 3D ポイントの意味情報をエンコードします。ここで、著者らは暗黙の関数を最適化して、2D DensePose CSE 埋め込みに一致する 3D 正準ポイントから正準埋め込みを生成します。

BANMo は、実際のデータセットと合成データセットの両方において、服を着た人間や動物の再構築において優れたパフォーマンスを発揮します。

著者について

この記事の筆頭著者は、西安交通大学を卒業し、現在はCMUで博士号取得を目指して動的構造の3D再構築アルゴリズムを研究しているYang Gengshan氏です。

BANMo 論文は、Meta でのインターンシップ中に完成しました。

2019年から現在までに、NeurIPSに4本の第一著者論文が採択され、CVPRにも4本の第一著者論文が採択されています。

<<:  Fudan DISC、クロスビジュアル言語モダリティ事前トレーニングモデルMVPTRを発表

>>:  2022年のインテリジェント運用保守(AIOps)の開発動向

ブログ    
ブログ    

推薦する

あなたの工場ではエッジ AI を導入する必要がありますか?

より多くの製造企業が人工知能 (AI) ツールを活用してデータにアクセスし、リアルタイムで対応するこ...

企業における人工知能: 8 つの誤解を解明

[[264444]]私たちはどんな新しいテクノロジーについても誤解しがちです。これは特にAI分野で顕...

夜もカラフルに、ディープラーニングでフルカラー暗視システムを実現

いくつかの軍事大作映画では、兵士が暗視ゴーグルを装着して前方を捜索するシーンは欠かせないようです。暗...

工業情報化部:チップやオペレーティングシステムなどのトップレベルの基盤にブレークスルーがなければ、AI業界は空中楼閣になるだろう

12月17日、浙江省徳清国際会議センターで2019年中国スマート企業発展フォーラムが開催され、工業情...

...

展望: 2023 年のディープラーニングとメタバースの未来

ディープラーニング (DL) は、再帰型ニューラル ネットワーク、長期短期記憶、畳み込みニューラル ...

人工知能の発展は、人間社会が現実から仮想へと向かう傾向を反映している。

人類は遊牧から農耕へ、そして農耕から工業化へと移行しました。工業化の後半は情報化であり、情報化の究極...

...

大きな模型 = 容器に入った脳?同源病院の朱松春氏のチームがAGIの主な欠陥を分析

最近、ChatGPT/GPT-4シリーズの製品は世界的な注目と議論を集めており、それらに代表される大...

...

人工知能:未来への道を切り開く

[51CTO.com クイック翻訳]デジタル経済が世界を席巻する中、人工知能は今日私たちが知っている...

人工知能の時代に教育はどのように変化するのでしょうか?

「教育は人材を育成する長期的な取り組みなので、将来を見据えたものであるべきだ。」先日開催された人工...

AIoT: IoTと人工知能の完璧な組み合わせ

ビッグデータを備えたモノのインターネットは産業用 IoT を企業の神経系と考えてください。これは、生...

...