Python 用 OpenCV について Dlib を使って顔検出を実装する

Python 用 OpenCV について Dlib を使って顔検出を実装する

Dlib は、プログラミング言語 C++ で記述された汎用のクロスプラットフォーム ソフトウェア ライブラリです。その設計は、契約による設計とコンポーネントベースのソフトウェア エンジニアリングのアイデアに大きく影響されています。したがって、何よりもまず、それは独立したソフトウェア コンポーネントのセットです。これは、Accelerated Software License に基づいてリリースされたオープンソース ソフトウェアです。

Dlib には、ネットワーク、スレッド、グラフィカル ユーザー インターフェイス、データ構造、線形代数、機械学習、画像処理、データ マイニング、XML およびテキスト解析、数値最適化、ベイジアン ネットワーク、その他多くのタスクを処理するためのソフトウェア コンポーネントが含まれています。近年、幅広い統計機械学習ツールの作成に多くの開発努力が注がれています。 2009 年に、Dlib は Machine Learning Research に掲載されました。それ以来、幅広い分野で利用されてきました。

dlib を使用すると、開発が大幅に簡素化されます。たとえば、顔認識や特徴点検出などのタスクを簡単に実現できます。同時に、face_recogintion ライブラリ (Python ベースのオープンソースの顔認識ライブラリ face_recognition を応用) など、dlib をベースに開発されたアプリケーションやオープンソース ライブラリも数多くあります。

dlib ライブラリは、右眉毛に 18 ~ 22 ポイント、左眉毛に 23 ~ 27 ポイント、左目に 37 ~ 42 ポイント、右目に 43 ~ 48 ポイント、鼻に 32 ~ 36 ポイント、口に 49 ~ 68 ポイントなど、顔の重要な部分をマークするために 68 ポイントを使用し、その中で唇も認識できます。

目のアルゴリズムを変更することで、瞬きや目を細めるなどの動作を認識できるほか、目や口を変えることでさまざまな感情を認識できる。

人物の68点をもとにアルゴリズムモデルを構築し、顔認識を行うことも可能です。

dlib のインストールは、特に python3.7 バージョンでは面倒です。pip install では正常にインストールできません。探索時間を節約するために、インターネットから whl パッケージをダウンロードすることをお勧めします。

 # Windows は whl ファイル経由で dlib をインストールします
# dlib は Python 3.7 と互換性の問題があります。Visual Studio がインストールされていても、dlib はインストールできません。
# そこで、インターネットからpython37用のdlibのwhlファイルをダウンロードしました
# pip で dlib-19.17.99-cp37-cp37m-win_amd64.whl をインストールします
# 顔認識をインストール
# imutils をインストールします
dlibをインポートする
numpyをnpとしてインポートする
cv2をインポート
imutilsをインポートする
imutilsからface_utilsをインポート

# Dlibの正面顔検出器 frontal_face_detector を使用する
検出器 = dlib.get_frontal_face_detector()
# 訓練されたモデル shape_predictor_68_face_landmarks.dat を使用して、顔を検出しながら顔の68個のキーポイントを検出します。
予測子 = dlib.shape_predictor(r'C:\Python\Pycharm\docxprocess\face_detector\shape_predictor_68_face_landmarks.dat')

# 画像が配置されているパス
画像名 = r'C:\Python\Pycharm\docxprocess\picture\other\renwu\juhui1.jpg' #21
# imgname = r'C:\Python\Pycharm\docxprocess\picture\other\renwu\juhui2.png' #6
# imgname = r'C:\Python\Pycharm\docxprocess\picture\other\ldh\angry.png'
# imgname = r'C:\Python\Pycharm\docxprocess\picture\other\ldh\ldh.png'
# 画像名 = r'C:\Python\Pycharm\docxprocess\picture\other\ldh\happy.png'
# 画像名 = r'C:\Python\Pycharm\docxprocess\picture\other\ldh\shigu.jpeg'
# imgname = r'C:\Python\Pycharm\docxprocess\picture\other\renwu\juhui4.png' #24
# 画像を読み取り、グレースケールに変換します
img = cv2.imread(画像名)
img_gray = cv2.cvtColor(img、cv2.COLOR_RGB2GRAY) です。

# 顔検出、顔データの取得
顔 = detector(img_gray, 1)
# 長方形[[(941, 254) (977, 290)], [(361, 210) (397, 246)], [(717, 138) (753, 174)], [(801, 214) (837, 250)],
# [(573, 138) (609, 174)], [(45, 210) (81, 246)], [(585, 202) (621, 238)], [(189, 254) (225, 290)],
# [(245, 214) (281, 250)], [(689, 210) (725, 246)], [(419, 247) (463, 290)], [(553, 242) (589, 278)],
# [(901, 218) (937, 254)], [(77, 246) (113, 282)], [(141, 222) (177, 258)], [(741, 242) (777, 278)],
# [(485, 202) (521, 238)], [(161, 110) (197, 146)], [(297, 166) (333, 202)], [(905, 138) (941, 174)],
# [(301, 246) (337, 282)], [(865, 106) (901, 142)], [(389, 146) (425, 182)], [(241, 138) (277, 174)]]
len(faces) < 1の場合:
print("顔が検出されませんでした")
それ以外:
print("面の総数は", len(faces))
enumerate(faces) 内の for(i, rect):

# フェイスフレームの左上隅の座標と長方形フレームのサイズを返します
(x, y, w, h) = face_utils.rect_to_bb(rect)
# 画像上に長方形のボックスを描き、検出された顔の数を出力します
cv2.rectangle(画像, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(img, "面#{}".format(i + 1), (x - 10, y - 10),
cv2.FONT_HERSHEY_SIMPLEX、0.5、(0、255、0)、2)


cv2.imshow("出力", img)
cv2.waitKey(0)

以前OpenCVで得られた顔検出結果

1927 年にベルギーのブリュッセルで開催された第 5 回ソルベー会議の白黒写真。21 人が写っている。

1924年、中国を訪れたラビンドラナート・タゴールと林慧銀らが写真を撮影した。合計7人だったが、肝心のタゴールの姿は確認できなかった。

1927年にベルギーのブリュッセルで開催された第5回ソルベー会議のカラー写真。24人が写っている。

年齢を感じさせない男の神、ハンサムなアンディ・ラウ。

トレーニング済みのモデル shape_predictor_68_face_landmarks.dat を使用して、顔と顔にある 68 個のキーポイントを検出します。もう一度、Andy Lau を見てみましょう。

 dlibをインポートする
numpyをnpとしてインポートする
cv2をインポート
imutilsをインポートする
imutilsからface_utilsをインポート

# Dlibの正面顔検出器 frontal_face_detector を使用する
検出器 = dlib.get_frontal_face_detector()
# 訓練されたモデルshape_predictor_68_face_landmarks.datを使用して、顔を検出しながら顔の68個のキーポイントを検出します
予測子 = dlib.shape_predictor(r'C:\Python\Pycharm\docxprocess\face_detector\shape_predictor_68_face_landmarks.dat')

# 画像が配置されているパス
画像名 = r'C:\Python\Pycharm\docxprocess\picture\other\renwu\juhui1.jpg' #21
imgname = r'C:\Python\Pycharm\docxprocess\picture\other\renwu\juhui2.png' #6
# imgname = r'C:\Python\Pycharm\docxprocess\picture\other\ldh\angry.png'
画像名 = r'C:\Python\Pycharm\docxprocess\picture\other\ldh\ldh.png'
# 画像名 = r'C:\Python\Pycharm\docxprocess\picture\other\ldh\happy.png'
# 画像名 = r'C:\Python\Pycharm\docxprocess\picture\other\ldh\shigu.jpeg'
# imgname = r'C:\Python\Pycharm\docxprocess\picture\other\renwu\juhui4.png' #24
# 画像を読み取り、グレースケールに変換します
img = cv2.imread(画像名)
img_gray = cv2.cvtColor(img、cv2.COLOR_RGB2GRAY) です。

# 顔検出、顔データの取得
顔 = detector(img_gray, 1)
# 長方形[[(941, 254) (977, 290)], [(361, 210) (397, 246)], [(717, 138) (753, 174)], [(801, 214) (837, 250)],
# [(573, 138) (609, 174)], [(45, 210) (81, 246)], [(585, 202) (621, 238)], [(189, 254) (225, 290)],
# [(245, 214) (281, 250)], [(689, 210) (725, 246)], [(419, 247) (463, 290)], [(553, 242) (589, 278)],
# [(901, 218) (937, 254)], [(77, 246) (113, 282)], [(141, 222) (177, 258)], [(741, 242) (777, 278)],
# [(485, 202) (521, 238)], [(161, 110) (197, 146)], [(297, 166) (333, 202)], [(905, 138) (941, 174)],
# [(301, 246) (337, 282)], [(865, 106) (901, 142)], [(389, 146) (425, 182)], [(241, 138) (277, 174)]]
len(faces) < 1の場合:
print("顔が検出されませんでした")
それ以外:
print("面の総数は", len(faces))
enumerate(faces) 内の for(i, rect):

# フェイスフレームの左上隅の座標と長方形フレームのサイズを返します
(x, y, w, h) = face_utils.rect_to_bb(rect)
# 画像上に長方形のボックスを描き、検出された顔の数を出力します
cv2.rectangle(画像, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(img, "面#{}".format(i + 1), (x - 10, y - 10),
cv2.FONT_HERSHEY_SIMPLEX、0.5、(0、255、0)、2)

# 顔に68個のランドマークポイントをマーク
形状 = 予測子(img_gray、矩形)
# <0x0000018AF09586F8 の dlib.full_object_detection オブジェクト>
# 形状は68座標点の行列に変換されます
シェイプ = face_utils.shape_to_np(シェイプ)
# [[245 149]
# [245 152]
# ...
# [246 159]]
# [[364 225]
# [365 228]
# ...
# [366 236]]
# ソース画像上のランドマークポイントを出力する
enumerate(shape) 内の j,(x, y) について:
cv2.circle(画像, (x, y), 2, (0, 0, 255), -1)
cv2.putText(img, "{}".format(j + 1), (x - 10, y - 10),
cv2.FONT_HERSHEY_SIMPLEX、0.5、(0、255、0)、2)

cv2.imshow("出力", img)
cv2.waitKey(0)

<<:  インテリジェントな仮想アシスタントが2022年に生産性を2倍にする方法

>>:  機械学習の 3 つの時代の計算パワーの法則をまとめる: 大規模モデルの出現によって何が変わったのでしょうか?

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

Weibo の背後にあるビッグデータの原理を探る: 推奨アルゴリズム

推薦システムは早くから誕生していたが、本格的に注目されるようになったのは、「Facebook」に代表...

...

データセンター不足がAIの未来を阻害している理由

多くの企業が AI テクノロジーの開発と導入に数十億ドルを投資しています。知的財産の問題、潜在的な規...

AI、ブロックチェーン、IoT、5Gの未来は統合だ

企業は業務を最適化し、現在の誇大宣伝サイクルを活用するために AI の導入に躍起になっています。報告...

具現化された知能の新時代! VLAは、UIナビゲーションとロボット操作を備えた最強の基本モデルMagmaを歓迎します

既存の大規模言語モデル、画像生成モデルなどは、少数のモーダルデータに対してのみ動作し、人間のように物...

企業にとって重要なAI技術のトレンド

[[428061]]マッキンゼー・アンド・カンパニーが2020年に実施した人工知能に関する世界的な調...

JetBrainsが2023年の調査レポートを発表:Rustの人気はますます高まり、開発者の77%がChatGPTを使用

JetBrains は 11 月 21 日に、世界中の 26,348 人の開発者からの調査結果をまと...

...

早期がん検査、医療AI:2020年の医療の10の進歩は注目に値する

過ぎ去ろうとしている2020年、私たちが戦っているのは新型コロナウイルスだけではありません。人間の健...

人間が理解できる音声を合成するために、機械はどのような「ディープラーニング」を行っているのでしょうか?

ディープラーニングは2006年に登場して以来、近年急速に発展し、学術研究と企業アプリケーションの両方...

...

ロボットは人間と機械の協働チームの「リーダー」になれるでしょうか?どのように機能しますか?

ロボット技術の発展により、ロボットは実生活においてますます重要な役割を果たすようになるでしょう。人間...

自然言語処理における大きな前進: Word2Vec モデルを適用して単語ベクトル表現を学習する

一般的な自然言語処理システムでは、単語のエンコードは任意であるため、個々の記号間の可能な関係に関する...

DAMOアカデミーが新世代の音声認識モデルDFSMNを発表し、オープンソースを発表

最近、アリババDAMOアカデミーの機械知能研究所は、新世代の音声認識モデルDFSMNを発表しました。...