エッジにおける AI について知っておくべきことすべて

エッジにおける AI について知っておくべきことすべて

近年、人工知能の応用は世界中で大きな進歩を遂げています。職場でのビジネス活動の拡大に伴い、クラウド コンピューティングは人工知能の進歩の重要な側面となっています。さらに、消費者がデバイスをより頻繁に使用するようになると、企業は顧客との距離を縮めるためにこれらのデバイスにテクノロジーを統合する必要性を認識するようになります。顧客のニーズをよりよく満たすことができます。そのため、エッジコンピューティング業界の規模は今後数年間で拡大するでしょう。

エッジAIとは何ですか?

エッジ AI は、エッジ コンピューティングと人工知能のハイブリッドです。エッジ コンピューティング機能を備えたローカル デバイス上で AI アルゴリズムを実行するというアイデアです。エッジ AI では、独自のシステムを他のシステムに接続する必要がないため、ユーザーはデータをリアルタイムで解釈できます。

現在、ほとんどの AI プログラムはクラウドベースのセンターで実行されていますが、クラウドベースのセンターでは大量のコンピューター処理能力とリソースが必要になるため、停止が発生しやすくなります。 Edge AI はこれらのプロセスをエッジ コンピューティング デバイスの操作に統合し、データを別の場所に送信する前にフィルタリングすることで、ユーザーが時間を節約できるようにします。

エッジAIのメリット

エッジ AI には、次のようないくつかの重要な利点があります。

  • コストとレイテンシを削減し、ユーザー エクスペリエンスを向上させます。これにより、リアルタイムで取引を実行したり、健康や睡眠習慣を追跡したりするリストバンドなど、ユーザーエクスペリエンスを中心としたウェアラブルテクノロジーの統合が可能になります。
  • 技術的には、必要な帯域幅を削減すると、インターネット サービスのレンタル コストが削減されるはずです。
  • エッジ テクノロジー デバイスには、データ サイエンティストや AI エンジニアの専門知識は必要ありません。可視化データ ストリームは監視のために自動的に送信されるため、スタンドアロン システムとして機能します。

エッジ AI が重要な理由は何ですか?

ただし、エッジ AI アプリケーションのリストは膨大です。現在の例としては、スマートフォンでの顔認識やリアルタイムの交通情報、半自動運転車やスマートデバイスなどが挙げられます。コンピューター ゲーム、スマート スピーカー、ロボット、ドローン、監視カメラ、ウェアラブル医療機器も、エッジ AI 対応製品です。今後エッジ AI の導入が期待される分野は次のとおりです。

  • 防犯カメラの検出プロセスにインテリジェンスを提供します。従来の防犯カメラは何時間ものビデオを収集し、必要に応じて保存して使用します。しかし、エッジ AI では、アルゴリズム プログラムがネットワーク内でリアルタイムに実行されるため、カメラは不審な動作をリアルタイムで検出して分析することができ、より効率的でコスト効率の高いサービスを提供できます。
  • 自動運転車によるデータと写真のリアルタイム解釈により、交通標識、人、他の車両、道路を認識する能力が向上し、交通の安全性が向上します。
  • 画像やビデオの分析、視聴覚刺激への反応、シーンや設定のリアルタイム認識(たとえば携帯電話)に使用することが可能です。
  • 産業用IoT(IIoT)の観点から見ると、安全性を向上させながらコストを節約できます。人工知能は機械製造チェーンを監視して潜在的な欠陥やエラーを検出し、機械学習はプロセス全体のデータをリアルタイムで再編成します。

エッジAIの未来

エッジ AI は、機械学習技術を使用してハードウェア デバイスから提供されるデータをローカルで処理するシステムです。このデータを数ミリ秒単位でリアルタイムに分析し、意思決定を行うために、一部のデバイスはインターネットに接続する必要はありません。これにより、クラウド コンピューティング アプローチに関連する通信コストが大幅に削減されます。言い換えれば、エッジ AI は、サーバー、IoT デバイス、エッジ コンピューティング サーバーなど、何らかのエンゲージメント ポイントにデータと処理を移動します。

エッジ AI は、クラウドで何百万ものデータ ポイントを送信および保存することに伴うプライバシーの問題や、データ送信機能を制限する帯域幅と遅延の制限を克服します。

エッジ コンピューティング テクノロジーは、自動運転車を含む多くの分野で重要であり、バッテリーの耐久性を向上させることでエネルギー消費の削減に役立ちます。ロボット、監視システム、その他の機器にも適用されます。その結果、エッジ AI ソフトウェア市場の価値は、2018 年の 3 億 5,500 万ドルから 2023 年までに 1 兆 1,200 億ドルに成長すると予想されています。

結論は

ユーザーが携帯電話に多くの時間を費やすにつれて、高速で効率的なサービスを提供して利益率を高めるためにエッジテクノロジーを実装することの価値を認識する企業や開発者が増えています。これにより、エンタープライズ グレードの AI ベースのサービスと、消費者の快適性と満足度のまったく新しい世界が開かれます。

<<:  製造業における人工知能: 産業用 AI のユースケース

>>:  核酸の結果を数えるのは難しいですか?復旦大学の博士課程の学生の活動が人気に

ブログ    
ブログ    

推薦する

...

アリババクラウドは、70億のパラメータを持つTongyi Qianwen大規模モデルをオープンソース化し、無料で商用利用可能に

大規模モデルの開発動向はオープンソースへと移行し始めています。周知のとおり、ChatGPT、GPT-...

人工知能技術は交通にどのように応用できるのでしょうか?

都市交通の分野では、AI信号制御、インテリジェントな街路交通監視、スマートバス停、スマート高速道路な...

...

...

人工知能はマーケティングをどのように変えるのでしょうか?

今日でも、私たちは人工知能 (AI) を未来のテクノロジーだと考えています。そのため、この分野で起こ...

2020 年に注目すべき機械学習とデータサイエンスのウェブサイト トップ 20

今日最も進歩的で、最先端で、刺激的なもの…データ サイエンスと機械学習は、今日非常に魅力的で、非常に...

人工知能がビジネスを徐々に変えていく

確かに、人工知能(AI)主導のテクノロジーが人間を不要にするか否かをめぐる議論は、少なくともこの聴衆...

データが多すぎたり、乱雑すぎたり、複雑すぎたりしていませんか?このようなデータガバナンスプロセスが必要です

機械学習の基盤となるデータは、GB、TB、PB と数え切れないほど増加してきました。現在、より大規模...

2022 年のビジネス インテリジェンスの 7 つのトレンド

ビジネス インテリジェンスは AI に置き換えられることはありません。BI は今でも存在し、役立って...

Google とスタンフォード大学が共同で記事「なぜ大規模なモデルを使用する必要があるのか​​?」を発表しました。

言語モデルは、自然言語処理の分野における研究と実践に大きな変化をもたらしました。近年、大型モデルは多...

米国のパイロットがエイリアンの存在を確認!米国は10年間UFOのリバースエンジニアリングを行っており、マスク氏はそれを否定していない

ちょうど昨日、米国議会は、米国政府が不時着したエイリアンの宇宙船とエイリアンの遺体を発見し、それを隠...

農業における生成AI

農業業界は、生成型人工知能 (AI) がもたらす貴重な洞察と生産性の向上により、大きな変革の可能性を...

Laiye Technology、RPA専用に設計されたAI機能プラットフォーム「UiBot Mage」をリリース

俊敏性、効率性、コスト管理性に優れたデジタル変革手法として、中国市場に参入後、高い注目と幅広い受け入...

人工知能は創意工夫を駆使して古い映画を修復し、色あせた記憶を蘇らせる

ここ2日間、「北京の古い街並みの復元」に関するビデオがインターネット全体を席巻している。 100年前...