1. 全体的なアーキテクチャ粗いソートは、リコールと細かいソートの中間のモジュールです。 。数万の候補項目を再現率から取得し、数百または数千の項目を出力して細かいランキングを作成します。これは、精度とパフォーマンスのトレードオフの典型的な結果です。推奨プールが大きくないシナリオでは、粗いソートはオプションです。粗い 全体的なアーキテクチャ 次のように: 2. 大まかな分類の基本的な枠組み:サンプル、特徴、モデル現在、大まかなソートが一般的にモデル化されており、基本的なフレームワークにもデータ サンプル、特徴エンジニアリング、ディープ モデルという 3 つの部分が含まれています。 1. データサンプル現在、粗いランキングが一般的にモデル化されており、そのトレーニング サンプルは細かいランキングに似ており、露出クリックを正のサンプルとして選択し、クリックのない露出を負のサンプルとして選択します。ただし、粗いソートには通常、数万の候補セットが含まれるのに対し、細かいソートには数百または数千しか含まれないため、解空間ははるかに大きくなります。トレーニングには曝露サンプルのみが使用されますが、曝露と非曝露の両方が同時に予測されます。サンプル選択バイアス (SSB 問題) が深刻で、トレーニングと予測の間に不一致が生じます。細かいソートと比較すると、粗いソートの SSB 問題は明らかにより深刻です。 2. 特徴エンジニアリング粗いソートの特性は細かいソートの特性と似ています。計算遅延要件が高く、わずか 10ms ~ 20ms であるため、一般的に 2 つのカテゴリに大別できます。
3. ディープモデル大まかな選別は基本的にモデル化されており、その開発プロセスは次の 4 つの段階に分けられます。 第一世代 : 人工ルール戦略は、事後統計に基づいて人工ルールを構築できます。たとえば、商品の過去の CTR、CVR、カテゴリの価格帯、販売量、その他の主要な要素を統合します。手動ルールは精度が低く、パーソナライズされておらず、リアルタイムで更新できません。 第二世代 : LR 線形モデルは、一定のパーソナライズ機能とリアルタイム機能を備えていますが、モデルが単純すぎるため、表現力が弱いです。 第三世代 : DSSM ダブルタワー内積深層モデル。ユーザーとアイテムを切り離し、2 つのタワーを通じて独立して構築します。これにより、アイテム ベクトルのオフライン ストレージが可能になり、オンライン予測の待ち時間が短縮されます。主なパラダイムは 2 つあります。
第4世代 :アイテムとユーザーが分離しているため、両者間の機能の相互連携がなく、モデルの表現力が弱い。そこで、軽量MLP粗粒度モデルであるCOLDに代表される第4世代モデルが提案されました。 SE ブロックを通じて特徴クリッピングを実装し、ネットワーク プルーニングおよびエンジニアリング最適化と連携して、精度とパフォーマンスのトレードオフを実現します。 3. 大まかなソートの最適化粗選別の主な問題点:
1. 精度の向上精度を向上させるためのソリューションには、主に精製蒸留と特徴クロスオーバーが含まれ、主な目標は特徴クロスオーバー問題を最適化することです。
洗練されたモデルは教師として機能し、粗いモデルを精製することで粗いモデルの効果を向上させます。これが粗いモデルのトレーニングの基本的なパラダイムとなっています。
機能の交差は、機能レベルまたはモデル レベルで実装できます。機能レベルでは、モデルの基本的な入力としてクロス機能を手動で構築しますが、これは独立したタワー内に存在することもできます。モデル レベルでは、自動クロスオーバーを実現するために FM または MLP が使用されます。主な方法は次のとおりです。 機能の抽出 : 教師と生徒は同じネットワーク構造を使用します。教師モデルは共通特徴とクロス特徴を使用し、生徒は共通特徴のみを使用します。生徒は教師からクロスフィーチャーの高レベルな情報を学ぶことができます。 クロスフィーチャーを追加する : 手動クロスフィーチャはフィーチャ レベルで構築され、独立したタワーで使用されます。クロスフィーチャをオフラインで保存するのは困難であり、リアルタイム計算スペースも非常に大きいため、この独立したタワーはあまり複雑にすることはできません。最初に思い浮かぶのは、ワイド&ディープモデルです。奥の部分では引き続き DSSM ツインタワーが使用され、奥の部分ではクロス機能が使用されています。 軽量MLP : 独立したタワー分割なしにモデルレベルで機能クロスオーバーを実現します。たとえば、COLD は、独立したタワーに依存するのではなく、機能の調整、ネットワークの削減、エンジニアリングの最適化を通じてレイテンシを削減します。 2. 遅延の低減精度とパフォーマンスは常にトレードオフの関係にあり、多くのソリューションでは両者のバランスが求められます。粗いソートにはより高いパフォーマンス要件があり、その遅延は 10 ミリ秒〜 20 ミリ秒以内に制御する必要があります。パフォーマンスの最適化 一般的な方法はたくさんある 。 主な方法は次のとおりです。
ネットワーク構造検索 NAS: より軽量で優れたモデルを使用します。ネットワーク構造内で NAS を検索してみてください。 3.SSBの問題粗いソートの解空間は、細かいソートの解空間よりもはるかに広くなります。細かいソートと同様に、露出サンプルのみを使用するため、サンプル選択バイアスの重大な問題が生じます。未露出サンプルの洗練されたスコアは、SSB の問題を軽減するために利用できます。 著者について謝 楊怡テンセント応用アルゴリズム研究者 テンセント応用アルゴリズム研究者。中国科学院卒業。現在はテンセントで動画推奨アルゴリズムを担当。自然言語処理と検索推奨アルゴリズムの豊富な経験を持つ。 |
<<: アリババのPingtouge Xuantie CPUが重要な進歩を遂げました。RISC-V + Android 12 AIサポートを初めて実現しました。
>>: スマート病院: 将来の医療技術のガイドラインとトレンド
ディープニューラルネットワークは、数学モデルを使用して画像やその他のデータを処理する多層システムであ...
1. よく使われるソートアルゴリズムの簡単な説明以下では、主にソートアルゴリズムの基本的な概念と原則...
[[426889]]古代の学者たちは、一杯の酒を飲みながら心の奥底にある感情を表現したり、武宇寺に...
人々がビジネスを行うようになって以来、ビジネスを強化するためにテクノロジーが活用されてきました。 1...
Google AI の公式ブログ *** では、音声をテキストを挟まずに直接音声に翻訳できる実験的な...
[[317457]]教育部が発表した最新の学部専攻新登録リストでは、理工系や総合大学のほか、語学や...
クラウド コンピューティング プロバイダーは、データを分析し、スキルの低いユーザー (または予算が限...
[[137024]]読むものを決めるのがメディアではなく、モバイル アプリケーションやソーシャル ネ...
[[431487]]サプライチェーン管理で機械学習を使用すると、日常的なタスクを自動化できるため、企...
1. 大規模グラフメモリ/計算問題を解決するための3つのパラダイム2年前に作成したチュートリアルでは...
1月16日、中国における大型モデルの偽造品撲滅活動で初の成功事例が発表された。アリババクラウドとアリ...
今週、Meta のオープンソース Llama2 が AI コミュニティ全体で人気を博しました。その結...