現在のインテリジェント顧客サービス市場とその NLP 分野において、チャット モジュールは非常に重要な研究分野です。現在、業界ではチャット モジュールに関して一般的に次の 3 つのソリューションが存在します。 固定テンプレートに基づくビジネスQ&Aの一般的なソリューションはテンプレートベースのQ&Aに基づいていることは誰もが知っています。同様に、テンプレートベースのQ&Aはチャットシステムにも適用できます。この方法の利点は、制御が容易で、少数のテンプレートで複数の質問のニーズを満たすことができることです。欠点は、質問に関係のない質問に答える可能性が比較的高いことです。 コーパスベースこのアプローチは、まず大量のチャットライブラリを収集して整理することです。一般的には、標準的な質問とそれに対応する質問を一般化することを意図しています。質問に対して複数の回答があり、1つの質問と複数の回答に似た効果を形成します。このアプローチの利点は、回答の内容を制御可能であり、予期しない回答がないことです。現在、チャットコーパスアプローチは市場で比較的普及しています。たとえば、金融および保険業界で成功したZhujian RobotとPing An、子供向け分野で成功したBeijing LightyearのTuring Robot、Dogtail GrassのGongzi Xiaobaiはすべてこのアプローチを使用しています。欠点は、回答の内容が非常に限られており、結局のところ、それらはすべて設計されたコーパス内の回答であることです。 生成に基づく生成的手法は常に NLP 研究の最前線にあります。Microsoft XiaoIce や主要な研究機関が発表した初期のチャット システムはすべて生成的でした。生成的対話システムの利点は、ディープラーニング/ニューラル ネットワークを通じて限られたコーパスに基づいて追加の回答を取得できるため、無から有を生み出す効果が得られることです。欠点は、回答の内容を制御できず、どのような回答が出てくるか誰にも予測できないことです。現在、この方法は研究や実際の「チャット」でのみ使用でき、企業のビジネスでは使用できません。結局のところ、回答の内容を実際に制御できる人は誰もいません。性別や人種差別が発生した場合はどうなるでしょうか? まとめると、これら 3 つの方法にはそれぞれ利点があります。実際の使用では、ビジネス ニーズに応じて対応する機能を採用する必要があります。以下は、3 つのソリューションの比較です。
企業の制作現場での現在の使用状況から判断すると、ほとんどの企業はコーパス + テンプレート ソリューションの組み合わせを採用しており、これによりコンテンツの制御性を実現できるだけでなく、ある程度の豊かさも満たすことができます。 |
>>: PyTorch ジオメトリック ライブラリとディープ グラフ ライブラリを比較して、チームが最適な GNN ライブラリを選択できるようにします。
今年も大学入試シーズンがやってきました。私が大学受験をしていた頃には、この言葉が流行っていたのを覚え...
[[234521]]文|ハオ・ジンファンSF作家第74回ヒューゴー賞受賞者公式アカウント「小唐科学子...
[[351468]]機械学習 (ML) は、一連のデータに基づいて予測を行うようにコンピューター シ...
今日、人工知能と機械学習は製造業界における変化の重要な原動力となっています。人工知能と機械学習により...
[[430902]]自動化の需要が継続的に高まっているため、ロボット産業の発展は加速段階に入り、わが...
1 月 11 日、OpenAI は小規模なセルフサービス チーム専用の新しいサブスクリプション プラ...
ダブルイレブンの割引を計算するために、昨年どれだけの髪の毛が抜けたか覚えていますか?昨年、天猫は総取...
[[433085]]アルゴリズムは本質的に、1 つ以上の入力を受け入れ、内部計算とデータ操作を実行...
著者について: Filip Piekniewski は、コンピューター ビジョンと AI の専門家で...
マイノリティ・リポートのトム・クルーズを覚えていますか? AI は将来のリスクを示唆する従業員の行動...