Nature のサブ出版物: 新しいアルゴリズムは、米国の 8 つの都市で 90% の精度で、1 週間前に 2 ブロック以内の犯罪を予測できます。

Nature のサブ出版物: 新しいアルゴリズムは、米国の 8 つの都市で 90% の精度で、1 週間前に 2 ブロック以内の犯罪を予測できます。

シカゴ大学の助教授イシャヌ・チャトパディアイ氏は、彼と彼のチームが「アーバン・ツイン」モデルを作成したとインサイダーに語った。このモデルは、2014年から2016年末までのシカゴの犯罪データで訓練することで、今後数週間以内に特定の犯罪が発生する可能性を予測し、90%の精度で半径2ブロックに絞り込むことができる。

我々は、過去に達成されたものよりもはるかに高い精度で、個々の事件レベルで都市犯罪を予測する方法を報告します」とチャトパディアイ氏は述べた。

「犯罪報告を予測するためには、都市特有の犯罪パターンを発見することの重要性を実証した。これにより、都市部の地域に対する新たな視点が得られ、新しい疑問を投げかけ、警察の行動を新たな方法で評価できるようになる」と共著者のジェームズ・エバンズ氏はサイエンスデイリーに語った。

この研究は『ネイチャー・ヒューマン・ビヘイビア』誌に掲載された。

 

論文リンク:

https://www.nature.com/articles/s41562-022-01372-0

将来の犯罪を予測する

このモデルは、シカゴ市の過去のデータに基づいており、報告された事件には、暴力犯罪(殺人、暴行、傷害)と財産犯罪(窃盗、窃盗、自動車盗難)という 2 つの大まかなカテゴリが含まれています。

AreaVibesがまとめたデータによると、2020年のシカゴの犯罪率は全国平均より67%高かった。

このデータが使用されたのは、警察への不信感や協力不足の歴史がある都市部で警察に通報される可能性が最も高いためである。

このような犯罪は、麻薬犯罪、交通違反、その他の軽微な違反行為に比べて、法執行機関の偏見の影響を受けにくい。

データをテストして検証することで、新しくトレーニングされたモデルは、個別のイベントの時間と空間座標を観察することで、今後数週間のイベントのパターンを正確に予測でき、地理的範囲を約 2 ブロックに制御できます。

このモデルは、主に犯罪の種類と発生場所に焦点を当て、他の 7 つの都市 (アトランタ、オースティン、デトロイト、ロサンゼルス、フィラデルフィア、ポートランド、サンフランシスコ) でも同様の結果を発見しました。

「私たちは都市環境のデジタルツインを作りました。過去に起こったことに関するデータを入力すれば、将来何が起こるかを教えてくれます」とチャトパディアイ氏は語った。「これは魔法ではありませんし、いくつかの制限はありますが、私たちはそれを検証し、本当にうまく機能しています。」

潜在的なバイアス

主執筆者のイシャヌ・チャトパディアイ氏は、「このツールの精度は、法執行政策の指針として使用すべきという意味ではない。例えば、警察署は犯罪防止のために積極的に近隣地区に集まるためにこのツールを使用すべきではない」と注意深く指摘している。

むしろ、犯罪に対処するための都市政策と警察戦略のツールボックスに追加されるべきである。

「これをシミュレーションツールとして使用して、市内の一部で犯罪が増加した場合や、別の部分で法執行が強化された場合に何が起こるかを確認できます。これらすべてのさまざまな変数を適用すれば、システムがそれらにどのように反応するかを確認できます」とチャットトップアディ氏は説明した。

研究チームはまた、事件後の逮捕者数を分析し、異なる地域での逮捕率を比較することで、犯罪に対する警察の対応についても調査した。

エコノファクトがまとめた調査によると、警察活動における人種的偏見は高い経済的コストを課し、すでに高いレベルの貧困を経験している地域で不平等を悪化させている。裕福な地域で犯罪率が上昇すると、逮捕される人も増えることが判明した。しかし、恵まれない地域ではこのようなことは起こっておらず、警察の対応と執行に不均衡があることを示唆している。

 

そのため、チャトパディヤイ氏は、データとアルゴリズムを公開して精査を強化し、その結果が警察の対応手段としてではなく、高レベルの政策に利用されることを期待している。

それにもかかわらず、このような研究については依然として多くの疑問が残っています。

2016年、シカゴ市警察は銃撃事件に巻き込まれる可能性が最も高い人物を予測するモデルを試したが、その謎のリストにはシカゴ在住の黒人男性の56%が掲載され、人種差別だと非難された。

一部のモデルはこうした偏見を根絶しようと試みるが、往々にして逆の効果をもたらし、基礎となるデータに含まれる人種的偏見が将来の偏見のある行動を悪化させると非難するモデルもある。

ケンブリッジの証拠に基づく警察活動センターのローレンス・シャーマン氏はニューサイエンティスト誌に対し、この研究によって、警察が追っている犯罪や市民の報告に基づく研究に警察のデータが組み込まれることを懸念していると語った。

チャトパディアイ氏もこれが問題であることに同意しており、彼のチームは、軽微な薬物犯罪や交通違反の取り締まりなど、市民が報告した犯罪や警察の介入、およびいずれにしても報告される可能性が高いより深刻な暴力犯罪や財産犯罪を除外することで、この問題を考慮しようとした。

「理想的には、犯罪を予測したり予防したりできるのであれば、警察を増員したり、特定の地域に法執行機関を集中させることだけが唯一の対応策ではないはずだ」とチャトパディアイ氏は語った。

「犯罪を予防できるのであれば、このようなことが起きないようにするために、誰も刑務所に行かず、社会全体に貢献するために、私たちにできることは他にもたくさんある。」

<<:  人工知能はクラウド セキュリティ サービスをどのように変えるのでしょうか?

>>:  PaLMを超えて!北京大学のマスターがDiVeRSeを提案し、NLP推論ランキングを一新した。

ブログ    

推薦する

...

マイクロソフトが27億パラメータのPhi-2モデルを発表、多くの大規模言語モデルを上回る性能を発揮

マイクロソフトは、Phi-2 と呼ばれる人工知能モデルをリリースしました。このモデルは、その 25 ...

...

年齢を測るAI顔認識

Instagramは、顔をスキャンして年齢を推定できるサードパーティ企業Yotiが開発したAIツール...

医療と人工知能の相互統合が眼科治療に新たな窓を開く

目は体表にある器官の中で画像データを取得しやすい器官であり、その健康状態は人々の生活や学習に与える影...

2019年に注目すべき9つのAIトレンド

人工知能は最近テクノロジーの世界で話題になっています。それは人々の生活を変えただけでなく、さまざまな...

KServe、Kubernetes環境に基づく高度にスケーラブルな機械学習デプロイメントツール

ChatGPT のリリースにより、機械学習技術の活用を避けることがますます難しくなってきています。メ...

量子人工知能研究における課題と機会

量子コンピューティングと人工知能の融合により、大きな期待と可能性を秘めた研究の最前線である量子人工知...

...

携帯電話がなくてもデジタル人民元が使えます!これらのブラックテクノロジーは

中国新聞社クライアント、福州、4月26日(記者 李金雷)将来のデジタルライフがどのようなものになるか...

ArcSoft Open Platformの新しいアルゴリズムは、顔認識セグメンテーションのシナリオの拡張に役立ちます

ArcSoft ビジュアルオープンプラットフォームであるArcFace 3.0の発売以来、アルゴリ...

ハーバード大学とMITがあるボストンは、政府が顔認識を禁止したと公式に発表した。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

貧弱なメモ帳でもマイクロソフトのAIの影響を受けないわけではない

Windows Insider ユーザーが投稿したスクリーンショットから判断すると、Windows ...

...