1時間から3.5分まで、Metaの新しいアルゴリズムは携帯電話で3D顔データを収集できる

1時間から3.5分まで、Metaの新しいアルゴリズムは携帯電話で3D顔データを収集できる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

人間の顔の 3D モデリングを完了するには、いくつのステップが必要ですか?

データ収集段階での答えは、「携帯電話 1 台 + 3.5 分」でした。

そうです、わずか 3.5 分間のデータで、忠実度が高く運転可能な、リアルな 3D 顔ポートレートを生成するのに十分です。

この研究は、ザッカーバーグ氏のメタバース プロジェクトの中核部門である Meta Reality Labs によるものです。この論文はSIGGRAPH 2022に採択されました。

著者らは、このアプローチは VR アプリケーションに適していると述べています。

つまり、VRの世界では、将来的には漫画のような顔で登場する必要がなくなるかもしれないのです。

代わりに、太った友達の本当の姿に簡単に会うことができます。

方法の原理

この結果を達成するための方法のフレームワークを下の図に示します。

具体的には、3つの部分に分かれています。

まず、大規模なマルチビュー顔データセットを使用してスーパーネットワークをトレーニングします。このスーパーネットワークは、ニューラルネットワークデコーダーを通じて個人のアバターパラメータを生成できます。

データセット内の顔は、マルチビューキャプチャシステムによって収集され、さまざまな年齢、性別、人種の 255 人の参加者の顔画像データが含まれています。

△左が撮影装置、右が撮影した顔

この巨大な3D顔を撮影する装置は、2019年にMeta社によって開発された。171台の高解像度カメラを搭載し、1秒あたり180GBのデータを記録できる。収集時間は約1時間です。

このハイパーネットワークでは、デコーダーの基本的な構成要素は、バイアス マップを備えた畳み込みアップサンプリング レイヤーであることに留意してください。

これらのバイアス マップは、レイ トレーシングを介してアバターをレンダリングするためのボリューム セルを生成するために使用されます。

さらに、デコーダー アーキテクチャは視線を他の顔の動きと区別できるため、VR アプリケーションでは視線追跡システムをより直接的に活用できます。

第二に、軽量な表情キャプチャです

この研究では、顔を撮影するために深度カメラを備えたスマートフォンのみが必要でした。

実験では、研究者らはiPhone 12を使用した。

収集プロセスは次のようになります。

収集されたデータは次のように処理されます。

  • 顔画像の各フレームの幾何学的形状とテクスチャを取得します。
  • 入力 RGB 画像に対して顔のランドマーク検出とポートレートのセグメンテーションを実行します。
  • 検出された顔のランドマーク、セグメンテーションのアウトライン、深度マップに合わせてテンプレート メッシュをフィットおよび変形します。
  • 各フレームのテクスチャはアンパックされ、集約されて完全な顔のテクスチャが得られます。

モデルをさらに改善する過程で、65 個の特定の表現を収集する必要があります。

最後に、この方法で出力される 3D 顔アバターは、ユーザーの外見に高度に一致するだけでなく、グローバル表現空間を通じてさらに駆動および制御することもできます。

研究者らは、採取プロセス全体には約3.5分かかると述べた。

ただし、モデリング プロセスはリアルタイムではなく、データ処理には数時間かかることに注意してください。

実験結果

ここまで述べてきましたが、どれくらい効果があるのか​​実験結果を見てみましょう。

Pinscreenの「1枚の写真から3Dデジタルアバターを構築する」方法(CVPR 2021)と比較すると、この方法はよりリアルな顔モデルを生成できます。

ハイデルベルク大学、ミュンヘン工科大学、マックス・プランク研究所などの研究機関による論文「Neural Head Avatars from Monocular RGB Videos」で提案された方法と比較すると、この方法はより忠実度の高い結果を生成できます。

しかし、著者はこの方法には、長い髪や眼鏡をうまく保持できないこと、アーティファクトが発生しやすいことなどの限界もあると指摘しています。さらに、この方法では照明条件に関しても一定の要件があります。

<<:  時代遅れのリソグラフィー機械は中国に販売できません!米国がオランダのASMLに不当な圧力をかけ、国産チップが再び抑制される

>>:  人工知能技術が英語学習にどのように役立つかについての簡単な議論

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

一貫性ハッシュアルゴリズムと分散ストレージへの応用

OStorageの責任者であるLi Mingyu氏は、同社のエンタープライズレベルのオブジェクトスト...

...

トニー先生に別れを告げる:海外の専門家が流行中に独自の美容ロボットを製作

パンデミック中にどうやって髪を切っていますか?どうやって見た目を維持していますか?多くの人がオンライ...

...

AI音声アシスタントの台頭:利便性とセキュリティのバランス

ChatGPT は私たちが知る限り最新の音声アシスタントです。 SiriやAlexaなどの企業は長年...

2021 年に注目すべき 27 の建設技術トレンド (パート 2)

テクノロジーは建設業界にかつてないほど大きな影響を与えています。クラウドベースのコラボレーションやデ...

ロボティック プロセス オートメーションの 10 大メリット

ロボティック プロセス オートメーション (RPA) ソリューションは、人間が日常的に実行する多くの...

Google が Mirasol をリリース: 30 億のパラメータで、マルチモーダル理解を長時間動画にまで拡張

11月16日、Googleは、動画に関する質問に答えたり、新たな記録を樹立したりできる小型人工知能モ...

...

人工知能はどのようにして新しい世界を創造するのでしょうか?

AI は時間の経過とともにさらに賢くなり、パワーを増していきます。私たちの多くにとって、人工知能 ...

...

...

「アルゴリズムとデータ構造」時間と空間の複雑さ

[[361000]]この記事はWeChatの公開アカウント「Unorthodox Front-en...

デザイナーがAIについて語る:「デザインは最終的に完全に消滅するだろう」

デザイン界では有名なブランド、フィリップ・スタルク。国際宇宙ステーションの居住モジュールからスティー...

香水アートとAIが出会うとき

[51CTO.com 速訳] 香水は依然として人工物とみなされており、「スーパーな鼻」を持つトップマ...