パーソナライズされた推奨の CTR 推定にディープラーニングを使用する理由は何ですか?

パーソナライズされた推奨の CTR 推定にディープラーニングを使用する理由は何ですか?

ディープラーニングはおそらく、過去 2 年間でコンピューター コミュニティで最もホットな言葉です。エンジニアはディープラーニングに基づいて、画像、音声、NLP などの分野で素晴らしい進歩を遂げてきました。ディープラーニング自体も常に探求と開発が進められており、その潜在能力の限界はまだ見えていません。

もちろん、ディープラーニングは完璧ではありません。たとえば、多くの問題の特徴は簡単に抽出でき、SVM や決定木アルゴリズムを直接使用して良好な結果を得ることができます。そして、ディープラーニングはあまり役に立ちません。問題もいくつかあります。データが不十分で、ディープラーニングアルゴリズムを通じて使用可能なモデルを取得することが困難です。さらに、一部の問題では計算リソースと時間に対する要件が厳しく、ディープラーニングの小型化にブレークスルーがない場合には最適な方法とは言えません。

プロジェクトがディープラーニングに適しているかどうかを判断する正しいアプローチ

(画像出典: ディープラーニング詐欺防止ガイド)

一方、ディープラーニングはパーソナライズされた推奨や計算広告の分野ではまだ大きな進歩を遂げていませんが、推奨システムはディープラーニングの最も重要な応用シナリオの1つになる可能性が高いと考えています。理由は次のとおりです。

今日の推奨システムは、膨大な量のデータを処理し、数万、あるいは数億の次元を持つ特徴を抽出する必要があります。ディープラーニング自体は、非常に優れた表現学習フレームワークです。人間が大量のデータから抽出できない特徴の組み合わせを学習することに優れています。

(画像出典: ディープラーニング詐欺防止ガイド)

データと特徴によって機械学習の上限が決まりますが、モデルとアルゴリズムはこの上限に近似するだけです。既存の推奨システムは、特徴エンジニアリングの効果に依存しています。特徴エンジニアリングは、問題に対する理解を継続的に深め、追加のデータ ソースを取得することに基づいています。しかし、データから抽出できる特徴の総数は非常に限られており、新しいデータ ソースや新しい特徴を取得することはますます困難になります。人工特徴エンジニアリングが高度になるにつれて、より多くの人材と時間が投入されますが、得られる新しい特徴がシステムに与える影響はますます少なくなります。現時点では、特徴表現にディープラーニングを使用する方がコスト面でより良い選択肢となる可能性があります。

図: IBM Watson システムの精度向上曲線。最初は結果が急速に改善されましたが、その後の小さな改善にも多大な労力が必要になったことがわかります。

そこで、ある業務でTensorflowベースのDNNを試し、一通り実行して経験を積みました。また、オリジナルのLRモデルと比較して20%以上のオンライン改善も実現しています。これらのコードが、皆さんのビジネスにディープ モデル フレームワークを迅速に実装するのに役立つことを願っています。

図: CTR 推定における DNN の一般的なフレームワーク

一般的に言えば、まずプロセス全体を実行するためのより単純なフレームワークを選択し、その後モデルの複雑さを徐々に増やしていきます。通常、下の図に示すフレームワークを選択して、使用するデータを連続的な特徴と離散的な特徴の 2 つのカテゴリに分割できます。

連続的な特徴の場合、何らかの正規化が必要です。離散的な特徴の場合、離散的な特徴を N 次元ベクトルに変換するために埋め込みが一般的に必要になります。このベクトルの長さは、通常、ベクトルの値空間に比例します。この埋め込みプロセスは FM を使用して実装できます。 私たちのコードでは、これは Tensorflow のembedding_column によって自動的に実現されます。

そこで、ユーザーデータとレコメンドアイテムデータをまとめて2つのカテゴリに分け、埋め込み後の離散特徴と連続特徴を合わせてニューラルネットワークの入力とし、クリックするかどうかの出力は[0,1]となる。ここでは、Tensorflow の DNNClassifier を直接呼び出します。このネットワークでは、レイヤーの数、各レイヤーのサイズ、ドロップアウト、アクティベーション関数、学習率などを設計できます。

  1. opt = tf.train.AdamOptimizer(学習率=0.01,
  2. ベータ1=0.9、
  3. beta2=0.999) #デフォルト0.001 0.9 0.999
  4.  
  5.  
  6. m = tf.contrib.learn.DNNClassifier(model_dir=model_dir,
  7. feature_columns=ディープ列、
  8. 隠しユニット=[1024, 512, 256],
  9. オプティマイザー = opt、
  10. activation_fn=tf.nn.relu, #デフォルト 
  11. ドロップアウト=0.05)

したがって、その後に続くのは継続的なパラメータ調整のプロセスであり、もちろんこの調整にはいくつかのテクニックがあります。インターネット上にはたくさんあるので、ここですべてを挙げることはしません。

ディープラーニングチューナー

(画像出典: ディープラーニング詐欺防止ガイド)

一般的に、ディープラーニングはそれほど神秘的なものではなく、非常に効果的なツールです。パーソナライズされた推奨事項については、多くのチームによる多くの試みがあったに違いありません。ここでは、Tensorflow に基づくシンプルで効果的な実装を提供し、ディープラーニングを試してみたいチームの役に立つことを願っています。

[[205391]]

オリジナルリンク: https://cloud.tencent.com/community/article/603674

著者: スー・ボラン

[この記事は51CTOコラムニスト「テンセントクラウドテクノロジーコミュニティ」によるオリジナル記事です。転載の許可を得るには51CTOを通じて原作者に連絡してください]

この著者の他の記事を読むにはここをクリックしてください

<<:  マイクロソフト CEO ナデラ氏へのインタビュー: 人工知能の全体的な方向性と将来はどのようなものでしょうか?

>>:  [私はジャービスです]: FaceIDの背後にあるディープラーニング視覚アルゴリズムについて語る

ブログ    
ブログ    
ブログ    

推薦する

...

...

AI 導入の謎を解明: クラウドとエッジ

現在、ディープラーニング テクノロジーを展開できる方法としては、デバイス上への直接展開、クラウド内へ...

人工知能は、優秀な人材が良い就職機会を見つけるのにどのように役立つのでしょうか?

人工知能は、大企業が従業員を管理する方法に大きな影響を与えています。 [[360624]]世界経済は...

清華大学は、大規模な事前トレーニングなしで効率的なNLP学習フレームワークTLMを提案

[[435029]]最近、清華大学の研究者たちは、シンプルで効率的な NLP 学習フレームワークを提...

中国製ドローンが日本で試験飛行、日本の農業に参入へ

[[227827]] 福岡県香春町で先日、農薬散布ドローンの試験飛行が行われた。以前は、1.8エーカ...

Tech Neo 10月号: 同時実行最適化

51CTO.com+プラットフォームは、オリジナルの技術コンテンツの選択と絶妙なレイアウトを通じて、...

LLaMa 3はGPT-4を目指し、ジェミニから教訓を得て7月に延期される可能性あり

過去には、画像生成モデルは主に白人を被写体として表示していることで批判されることが多かったが、Goo...

...

MITの新しい水中ロボット!機械学習を使用して 18 時間でパトリック スターを作成する (ダニエラ ラスとの共著)

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

TFserving によるディープラーニング モデルの導入

1. TFservingとは何かモデルをトレーニングし、それを外部の関係者に提供する必要がある場合は...

アメリカ心理学会:AIと頻繁に接触する従業員は孤独になりやすく、病気のリスクも高まる

アメリカ心理学会は6月14日、「AIと頻繁に接触する従業員は孤独になりやすく、病気のリスクも高まる」...

オープンAI音声アシスタントMycroftでプライバシーを確​​保

[[258822]] [51CTO.com クイック翻訳] 音声アシスト技術は非常に人気があり、すで...

顔だけで下着を全部剥ぎ取られる:マスクは役に立たない、この顔検査は国民を怒らせている

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...