無人運転と公共交通機関の標準仮想トラックで安全性を確保

無人運転と公共交通機関の標準仮想トラックで安全性を確保

深セン初の無人バスの試験運行が始まり、我が国の科学技術力に対する信頼が高まっています。ほぼ同時期に、米国とシンガポールでも無人運転車のテストが始まりました。不思議なことに、無人運転車のほとんどはバスから始まりました。分析の結果、公共交通機関の利点、技術的な制限、環境に優しい建設の容易さという 3 つの理由が見つかりました。

[[212724]]

バスは実際には仮想鉄道輸送である

まず、バスには線路はありませんが、事実上は鉄道輸送の一種です。バスのルートは毎日決まっており、停留所と出発地点も決まっています。一部の道路にはバス専用路線もあります。この場合、バスは走行中に他の車両よりも干渉を受ける可能性がはるかに低くなります。地下鉄は現在ほぼ無人運転であるため、バスなどの準鉄道輸送を実現することは難しくなく、バスに対する技術的要件が大幅に軽減されると考えられます。

第二に、バス路線では複雑な道路状況は発生しません。山や川を通らなければならない長距離バスに比べ、公共交通機関が選ぶ道路は一般的に幹線道路であり、道路状況は比較的良好で、環境の複雑性は低く、利用可能なデータ量が多く、緊急事態が発生した場合でもリスクを軽減する余地が十分にあります。

[[212725]]

公共交通機関は仮想鉄道輸送である

第三に、公共交通機関は自動運転車にとって優れたテストの場です。一般的に、無人運転車が道路を走行する場合、安全上の理由から大勢の人が乗ることは避けるべきであると考えられています。しかし、L3レベルは自動運転であり、完全に人を排除することはできないため、バスと比較してデメリットはありません。逆にバスは高頻度・定型性などの特性も備えているため、そのテスト結果を無人運転技術の研究開発にフィードバックすることができます。さらに、ほとんどの都市では安全を確保するためにバス専用レーンを設けています。

自動運転L3はハードル

自動運転は、現在最も発達した人工知能の応用の 1 つです。その発展の主な理由は、世界的に受け入れられている標準があることだと一般に考えられています。

[[212726]]

自動運転レベルは技術の標準

自動運転の分類基準には2つのシステムがあり、1つは米国運輸省の国家道路交通安全局(NHSTA)が提唱するもの、もう1つは米国自動車技術協会(SAE International)が提唱するものである。 2 つの規格には多くの共通点があります。どちらも自動運転を 6 つのレベルに分け、L0 は純粋な手動運転、L5 は最高レベルです。また、2 つの規格の L0 と L3 の間には違いはなく、唯一の違いは L4 の定義にあります。

NHSTA の L4 と L3 の違いは、適用可能な設計シナリオで完全な自動運転が可能かどうか、および人間の介入が必要かどうかにあります。 SAE International の規格はより複雑です。L4 では、緊急時の対応戦術やリスクを最小限に抑える運転スキルなど、自動運転中の極端な状況に部分的に対処できる必要があると考えています。

[[212727]]

Googleは強力だが、まだ真のL4を見せていない。

同様に、L5 は、24 時間いつでも無制限の状況に適応できる、想像できる最も理想的な状態に他なりません。また、両規格とも L4 が超高度な自動運転を実現できると認められているため、システムはステアリング、加減速、環境観測、複雑な交通状況への対応を自動的に実行できます。しかし、L3とL4の違いは、自動運転が本当に人間を排除できるかどうかを意味します。日本の専門家は、レベル3からレベル4までの難易度はエベレスト登山と同等だと考えています。

そして、世界で L4 を達成できる企業はいくつあるでしょうか?中国の百度はL4を達成したと考えているが、L4規格はNHSTAのものだ。SAE International規格によると、百度の無人運転車はまだL3レベルだ。自動運転分野で業界最強と認められているグーグル・ウェイモは、先月、レベル4レベルを達成できると発表したばかりで、今後数ヶ月以内に試験運用のため一般公開される予定だ。このことから、L3 のハードルを越えるのは非常に難しいことがわかります。

公共交通機関は自動運転車が環境問題を克服するのを助ける

12月初旬に米国で実施された調査では、世界中の自動運転関連企業は概ね、資金調達と技術の応用が研究開発における2つの大きな課題であると考えていることがわかった。

これを公共交通機関に適用すれば、これら2つの大きな問題が解決されるでしょう。技術面では、バスが提供する実際の運行データは企業がさらなる研究開発を行うのに役立ちますし、バス自体の利点により、L3はすでにほとんどの状況に対応できます。

[[212728]]

経済的な観点から見ると、公共交通機関部門はまさに自動運転車にとっての楽園です。公共交通機関の車両は高価なため、許容されるコストの範囲は比較的高くなります。同時に、夜行バスの無人運転を実現すれば事故率を効果的に減らすことができ、これは間違いなく厳しい要求である。同時に、政策的な支援と新技術の認知により、公共部門は自動運転車の開発において独自の優位性を持っています。

一方、自家用車市場や商用輸送市場においては、無人運転技術が十分に成熟していないと運輸部門からの認知を得ることが難しい。さらに、交通部門が同意し、政策が承認されたとしても、より高価で安全性も不確かな無人運転車を一般ユーザーがどれだけ熱心に購入するかはまだ不明です。市場がまだ開かれていない段階では、バスを選択するのが間違いなく最も安全な方法です。

結論

市場では自動運転車の大きな可能性が認識されていますが、自動運転車に対する技術的および財政的な障壁も認識されています。これらの特性により、バスは自動運転車を導入する最初の市場セグメントとなるでしょう。

<<:  研究室から生活まで、人工知能はどこまで進化しているのでしょうか?

>>:  Github 年次レポートレビュー: TensorFlow が間違いなく最大の勝者です!

ブログ    
ブログ    

推薦する

素晴らしい配達でした!インテルビジョン観測室は、実体経済の発展に向けた新たな道を切り開きます|インテルビジョン

5月23日、 「実体経済の新たなエンジンを動かす『中核』のダイナミックエネルギー」をテーマにしたイ...

ロシアメディア:人工知能は顔認識技術を使って宗教的傾向を判断できる

ロシア新聞は1月19日、「もう隠せないのか?」と題する記事を掲載し、米スタンフォード大学の学者マイケ...

2023 年のエンタープライズ AI の現状: AI は仕事にどのような影響を与えるでしょうか?

11月8日、英国アバディーン大学の研究機関がAIがもたらす変化について詳細な調査を実施し、最新の研...

スマートシティが公衆衛生危機の影響を緩和する方法

IETスマートシティジャーナルに掲載された論文「COVID-19パンデミック:新たな流行に対応するた...

ハードウェアとコードを分離し、APIを安定化したPyTorch Lightning 1.0.0が正式リリース

Keras と PyTorch はどちらも初心者にとても優しいディープラーニング フレームワークです...

強化学習アルゴリズムの分類をさまざまな観点から理解します

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...

スマートシティ: 統合管理プラットフォーム

都市は、モビリティ、安全性、住民とのコミュニケーションに関するデータの収集を容易にするために、より多...

調査:消費者の68%がスマート家電がプライベートな会話を盗聴できると考えている

PCMag が調査を実施したところ、ユーザーの 68% が、さまざまなスマートホーム製品が知らないう...

...

分散ID生成スノーフレークアルゴリズム

一意の ID はデータの一意性を識別します。分散システムで一意の ID を生成する方法は多数あります...

注意してください、これらの6つのアルゴリズムには落とし穴があります:中国消費者協会はビッグデータが古い顧客をターゲットにしていると指摘しています

ビッグデータの登場以来、「古い顧客を搾取する」問題はますます深刻になっています。テイクアウトでも旅行...

GPT-4は本当に愚かになったことが研究で証明される:数学的能力は3か月で劇的に低下し、コーディング能力も低下した

数日前、多くのユーザーが GPT-4 が愚かになったと不満を述べていましたが、どれほど愚かになったの...

コストを 95% 削減した ChatGPT の代替品を作成しましょう! OpenAIのハードコアアップデートが来月リリースされ、ビジュアルAPIが登場

世界中の開発者は長い間、OpenAI モデルの価格に悩まされてきました。ロイター通信は、11月6日に...

ファーウェイの天才少年Zhihuiは、かわいいロボットを自作し、5時間でオープンソース化し、GitHubで317個のスターを獲得した。

前回ブドウに縫い目をつけた「完全自社開発」のアイアンマンロボットアーム「ダミー」を覚えていますか? ...

RPAテクノロジーが製造業の未来をどのように変えるか

RPA コンサルティング サービスは、製造業者がソフトウェア ロボットを使用してさまざまな反復的なル...