0コードの微調整大型モデルが人気で、わずか5ステップで、コストは150元と低い

0コードの微調整大型モデルが人気で、わずか5ステップで、コストは150元と低い

0 コードの大規模モデルを20 ドル未満で微調整できますか?

プロセスも非常に簡単で、必要なステップは 5 つだけです

LLaMA、GPT、StableLM などの一般的なオープンソース生成モデルを処理できます。

写真

これは、最新の人気 API プラットフォームであるMonster APIです。

オープンソース分野におけるこの新たな取り組みは、AI開発におけるゲームのルールを書き換え、AIの応用速度を加速させることができると考える人もいます。

写真

中には、GPT-3/GPT-4 に後から接続されるのかと興奮気味に尋ねる人もいました。

写真

それで、それは具体的にどのように達成されるのでしょうか?

コーディングなしで5ステップで完了

簡単に言えば、Monster API は微調整の手順を可能な限り簡素化し、開発者が一連の設定を手動で実行する必要がなくなると同時に、安価な GPU リソースとメモリの最適化も提供します。

具体的なプロセスは以下のとおりです。

最初のステップは、微調整するモデルを選択することです

たとえば、LLaMA-7B、GPT-J-6B、StableLM-7B などです。Monster API は、少なくとも 10 個の基本的な大規模モデルを提供します。

写真

2 番目のステップは、微調整タスクを選択または作成することです。たとえば、指示の微調整、テキスト分類、カスタム タスクなどです。

写真

3 番目のステップは、HuggingFace データセットを選択することです。

Monster API は、幅広いオプションを提供する HuggingFace データセットをシームレスに統合できます。また、タスクの種類に基づいてデータセットを推奨することもできます。

手動で行う必要はなく、フォーマットは自動的に設定されます。

写真

4 番目のステップは、ハイパーパラメータを設定することです。

写真

ステップ 5 : 確認して送信します。

上記の手順をすべて設定したら、エラーがないことを確認し、送信してください。

Monster API は、WandB のログを通じてタスクを監視できることを示します。

彼はブログに、DataBricks Dolly 15k を使用して LLaMA-7B を微調整し、3 つのエポーチを完成させるのにかかる費用は 20 ドル未満 (約 144 人民元) だと書いています。

公式サイトでは、登録後にユーザーに2,500ポイントが付与されると記載されています。メンバーシップは 3 つのレベルに分かれており、それぞれ月額 9 ドル、29 ドル、39 ドルの料金がかかります。

写真

Monster API は、微調整に加えて、生成 AI 用のさまざまな API インターフェースも提供しており、他のソリューションよりもコストが 80% 低いと主張しています。

写真

この会社は110万ドルの資金を調達した。

報道によると、Monster API を開発する会社は、プレシード資金として110 万ドルを調達したとのことです。

この AI スタートアップは、世界中に散在する GPU リソースを柔軟にスケジュールし、開発者がより低価格で利用できるようにすることで、自らを「GPU 分野の Airbnb」と位置づけています。

写真

創設者は Gaurav Vij と Saurabh Vij の 2 人の兄弟です。

Gaurav Vij 氏も CV 会社を設立しました。CV 会社が巨大なクラウド コンピューティング資本に直面する必要があったため、このようなプラットフォームを作成するというアイデアが生まれました。

Saurabh Vij 氏は以前は CERN の素粒子物理学者であり、そこで分散コンピューティングの研究も行っていました。

兄弟は、数回の技術的な反復を経て、機械学習タスクにおけるコンシューマーグレードの GPU のパフォーマンスを最適化し、AWS プラットフォームと比較して Whisper AI モデルの実行コストを 90% 削減できたため、この方法を使って何万人もの開発者を支援してみようと考えたと述べています。

同時に、同社の顧客の1社が分散型GPUコンピューティングリソースを使用することで30万ドルを節約したことも明らかにした。

参考リンク:
[1] https://blog.monsterapi.ai/no-code-fine-tuning-llm/

[2] https://www.enterpriseai.news/2023/06/09/monster-api-launches-the-airbnb-of-gpus-with-1-1m-pre-seed/


<<:  AIによる教育革命:自己主導型およびガイド型適応型学習の包括的分析

>>:  5400億パラメータの大規模モデル進化ツリーが大幅に更新されました!最も詳細なプロンプトスキルを備えた85ページのLLM開発履歴

ブログ    
ブログ    

推薦する

...

...

劉烈宏:中国の中核人工知能産業の規模は今年上半期に770億元に達した

[[354052]] 11月24日、工業情報化部の劉烈宏副部長は人工知能サブフォーラム「人工知能:新...

Uberの自動運転車による死亡事故の捜査に新たな進展:横断歩道の外を歩く歩行者を識別できない

最近、国家運輸安全委員会(NTSB)は、Uberの自動運転車による死亡事故に関する調査の新たな進展を...

TensorFlow レビュー: 最高のディープラーニング ライブラリ、そして今も進化中

[51CTO.com クイック翻訳] バージョン r1.5 のリリースにより、Google のオープ...

...

ビデオ映像から間取り図を推測する新たなAI研究は目を見張るものがある

フロアプランは、空間を視覚化したり、ルートを計画したり、建物のデザインを伝えたりするのに役立ちます。...

回答者の半数以上が顔認識技術の使用に懸念を抱いている

近年最も注目されている新技術の一つとして、顔認識技術が広く利用されています。人々の生活は便利になった...

今日のAIの優れた使用例

企業は AI パイロットを実施し、AI を本番環境に移行しています。大手組織はここに賭けており、すで...

...

Googleの「AIが写真を推測」アプリがWeChat Momentsで人気:ユーザーの参加でよりスマートに

Google 初の WeChat ミニプログラム「絵を当てよう」アプリは、リリースから 1 日で、一...

王小川の大型模型製作の秘密のレシピが初めて公開されました。5つのステップ、完成まで2か月

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

顔認識技術は「束縛」されているのか?テクノロジーはまだシステムを待つ必要がある

文/東方一洛顔認識技術は公共の場で自由に使用できなくなるのでしょうか?最近、欧州連合は377対248...

人工知能、機械学習、ディープラーニング、データサイエンス

人工知能やデータサイエンスに不慣れな方であれば、これらの 4 つの用語を何度も目にしたことがあるはず...