人工知能によりデータセンターのコストと制御ニーズが増加

人工知能によりデータセンターのコストと制御ニーズが増加

人工知能 (AI) はコンピューティングとデータ分析の世界を変えています。機械学習、自然言語処理、コンピューター ビジョン、音声認識などの AI アプリケーションは、企業や消費者に新たな機能と効率をもたらします。しかし、AI には高いコストも伴います。AI を実行するには、膨大な量の計算能力、メモリ、ストレージ、エネルギーが必要になります。

データ センターはデジタル経済のバックボーンであり、インターネットやクラウド サービスを支えるサーバー、ネットワーク、ソフトウェアをホストしています。データセンターは大量の電力を消費し、世界のエネルギー需要の約 1% を占めています。 AI が普及し、高度化するにつれて、データ センターは AI 処理の需要の増大に対応するためにハードウェアとインフラストラクチャをアップグレードする必要が生じます。これにより、データセンターの運用コストがさまざまな点で増加します。

まず、データ センターは、AI アルゴリズムに必要な大規模な並列計算を処理できる、GPU (グラフィックス プロセッシング ユニット)、TPU (テンソル プロセッシング ユニット)、FPGA (フィールド プログラマブル ゲート アレイ) などのより強力で特殊なプロセッサに投資する必要があります。これらのプロセッサは従来の CPU (中央処理装置) よりも高価であり、より多くのエネルギーを消費し、より多くの熱を発生します。データ センターでは、これらのプロセッサをさらに購入してサーバーにインストールする必要があり、データ センターの設備投資と運用コストが増加します。

第二に、データセンターは、AI アプリケーションによって生成および消費される膨大な量のデータに対応するために、ストレージ容量と帯域幅を拡張する必要があります。データは AI の原動力であり、AI モデルは画像、ビデオ、テキスト、音声、センサーなど、さまざまなソースからの膨大な量のデータにアクセスし、処理し、保存する必要があります。データセンターでは、より高速なデータ転送速度をサポートするために、ハードドライブを追加し、サーバーにソリッドステートドライブまたはフラッシュストレージデバイスをインストールし、ネットワーク機器とケーブルをアップグレードする必要があります。これらのアップグレードにより、データセンターのハードウェアとメンテナンスのコストも増加します。

3 番目に、データ センターは、AI プロセッサのより高い発熱と電力消費に対処するために、冷却システムとエネルギー効率を改善する必要があります。冷却はデータセンターにおける大きな課題と費用の 1 つであり、データセンターの総エネルギー消費量の約 40% を占めています。 AI プロセッサは CPU よりも多くの熱を発生するため、データセンターではハードウェアの過熱や損傷を防ぐために、より多くのファン、エアコン、液体冷却システム、その他の冷却ソリューションを設置する必要があります。データセンターでは、二酸化炭素排出量と電気代を削減するために、エネルギー使用を最適化し、再生可能エネルギーをさらに調達する必要もあります。

これらのコストの上昇を効果的に管理するには、データセンターは次世代のデータセンター インフラストラクチャ管理 (DCIM) ソフトウェアを活用する必要があります。 DCIM はデータセンターの運用を包括的に監視および制御し、管理者が電力と冷却をリアルタイムで監視および管理できるようにします。十分に活用されていないリソースを特定することでエネルギー消費を最適化し、ホットスポットを検出することで冷却効率を向上させることができます。 DCIM ソフトウェアは、電力使用量、スペース、冷却能力に関する分析を提供することで、データセンターが将来の拡張やアップグレードをより正確に計画するのに役立ち、資本経費と運用経費を削減できる可能性があります。 DCIM ソフトウェアは、リアルタイム監視、予測分析、リソース最適化を通じて、データセンターの運用に伴う増え続けるコストの抑制に役立ちます。

要約すると、AI にはより強力なプロセッサ、より大きなストレージ容量と帯域幅、そしてより多くの冷却システムとエネルギー効率が必要となり、それによってデータセンターの運用コストが増加します。データセンターは、AI サービスの需要の高まりに対応するために、ハードウェアとインフラストラクチャのアップグレードに多額の投資を行う必要があります。しかし、この投資は長期的には利益をもたらす可能性もあります。 AI を DCIM ソフトウェアなどの管理ソリューションと組み合わせることで、データセンターのパフォーマンス、信頼性、セキュリティ、持続可能性を向上させることができます。

<<:  AIGCコンピューティングパワーパノラマとトレンドレポートが公開されました! AIGCのコンピューティングパワー構造、産業チェーン、5つの新しいトレンド判断を説明する記事

>>:  最新の NaViT モデルは最高です!あらゆるアスペクト比と解像度に対応する強力なトランスフォーマー

ブログ    
ブログ    
ブログ    

推薦する

業務自動化、中国海外土地投資のデジタル変革体験

デジタル変革の風があらゆる業界に吹き荒れています。人々の幸せな暮らしに影響を与える産業として、不動産...

世界を支配するマスターアルゴリズムは存在するのでしょうか?

[[159157]]アルゴリズムは私たちの生活にますます影響を与えています。しかし、ほとんどの場合...

2021年世界の最新人工知能技術9選

1. 自然言語生成自然言語生成は、構造化されたデータをネイティブ言語に変換する流行のテクノロジーです...

感情分析に NLP を使用する理由は何ですか?

私を含め、ほとんどの人は人間の感情の変化を正確に把握することはできませんが、コンピューターはそれがで...

メールを受け取りましたか? GPT-3.5-Turbo-Instructがリリースされ、マルチモーダル大型モデルGobiも公開されました

今月初め、OpenAIは初の開発者会議「OpenAI DevDay」を2か月後に開催することを公式発...

H100推理が8倍に急上昇! NVIDIAは10以上のモデルをサポートするオープンソースのTensorRT-LLMを正式に発表した。

GPU が不足している人々は、その苦境に別れを告げようとしています。 NVIDIA は現在、H10...

440億ドル!マスク氏がツイッター買収に成功 トランプ氏「アカウントが復活してもツイッターは使わない」

4月26日、海外メディアの報道によると、2週間後、マスク氏によるツイッター買収がようやく決着した。...

Github が絶賛: モザイクテキスト = 無意味、AI があなたの思考をすべて見抜く、オープンソースに

「この写真をフォトショップで加工しましょう!」 「いいですよ、でもこの段落は検閲しないと面倒なことに...

...

2022年のゲーデル賞が発表されました!暗号の専門家3人が理論計算部門で最高賞を受賞

2022年のゲーデル賞が発表されました! ACM アルゴリズムおよび計算理論に関する興味グループ (...

...

ディープラーニングモデルのサイズとモデル推論速度に関するいくつかの議論

[[426034]]この記事では、計算量、パラメータ数、メモリアクセス量、メモリ使用量など、ディープ...

...

ディープラーニングとマシンビジョンの重要性を分析!ロボットを自由にさせる?

ディープラーニングは産業用ロボットの中核技術であり、ロボットが制約から解放され、環境の変化に応じて自...