Gym Anytradingに基づく強化学習の簡単な例

Gym Anytradingに基づく強化学習の簡単な例

強化学習 (RL) は近年、アルゴリズム取引の分野で大きな注目を集めています。強化学習アルゴリズムは経験から学習し、報酬に基づいてアクションを最適化するため、取引ロボットに適しています。この記事では、Gym Anytrading 環境と GME (GameStop Corp.) 取引データセットを使用して、強化学習ベースの取引ロボットを構築する方法について簡単に紹介します。

強化学習は機械学習のサブフィールドであり、エージェントが特定の目標を達成するために環境と対話することを学習します。エージェントは環境内でアクションを実行し、報酬という形でフィードバックを受け取り、時間の経過とともに累積報酬を最大化するように学習します。エージェントの目標は、状態をアクションにマッピングし、可能な限り最良の結果をもたらす最適なポリシーを見つけることです。

ジム エニトレーディング

Gym Anytrading は、OpenAI Gym 上に構築されたオープンソース ライブラリであり、さまざまな金融取引環境を提供します。これにより、さまざまな取引シナリオをシミュレートし、RL アルゴリズムを使用してさまざまな取引戦略をテストできます。

依存関係をインストールする

使用される主なライブラリは、TensorFlow、stable-baselines3、Gym Anytrading です。必要な依存関係をインストールするには、次のコードを実行します。

 !pip install tensorflow !pip install stable_baselines3 !pip install gym !pip install gym-anytrading !pip install tensorflow-gpu

ライブラリのインポート

必要なライブラリをインポートし、環境を設定して開始します。

 # Gym stuff import gym import gym_anytrading # Stable baselines - RL stuff from stable_baselines3.common.vec_env import DummyVecEnv from stable_baselines3 import A2C # Processing libraries import numpy as np import pandas as pd from matplotlib import pyplot as plt

GME取引データの読み込み

例として、GameStop Corp. (GME) の過去の取引データを使用します。 GME 取引データが CSV 形式で保存されていることを前提としています。保存されていない場合は、検索エンジンでダウンロード アドレスを見つけることができます。

GME 取引データをロードし、Gym Anytrading 環境を準備します。

 # Load GME trading data df = pd.read_csv('gmedata.csv') # Convert data to datetime type df['Date'] = pd.to_datetime(df['Date']) df.dtypes # Set Date as the index df.set_index('Date', inplace=True) df.head()

ジムを通じた取引環境の構築

次のステップは、Gym Anytrading を使用して取引環境を作成することです。環境は GME 取引データを表し、エージェントは株式の購入、売却、保有などのアクションを実行して環境と対話します。

 # Create the environment env = gym.make('stocks-v0', df=df, frame_bound=(5, 100), window_size=5) # View environment features env.signal_features # View environment prices env.prices

環境を探索する

RL モデルの構築に進む前に、環境を視覚化してその特性を理解すると役立ちます。

 # Explore the environment env.action_space state = env.reset() while True: action = env.action_space.sample() n_state, reward, done, info = env.step(action) if done: print("info", info) break plt.figure(figsize=(15, 6)) plt.cla() env.render_all() plt.show()

このグラフには、GME 取引データの一部と、Gym Anytrading 環境によって生成された売買シグナルが表示されます。


強化学習モデルの構築

stable-baselines3 ライブラリを使用して RL モデルを構築します。 A2C(Advantage Actor-Critic)アルゴリズムを使用します

# Creating our dummy vectorizing environment env_maker = lambda: gym.make('stocks-v0', df=df, frame_bound=(5, 100), window_size=5) env = DummyVecEnv([env_maker]) # Initializing and training the A2C model model = A2C('MlpPolicy', env, verbose=1) model.learn(total_timesteps=1000000)

モデルの評価

モデルをトレーニングした後、GME 取引データのさまざまな部分でそのパフォーマンスを評価できます。

 # Create a new environment for evaluation env = gym.make('stocks-v0', df=df, frame_bound=(90, 110), window_size=5) obs = env.reset() while True: obs = obs[np.newaxis, ...] action, _states = model.predict(obs) obs, rewards, done, info = env.step(action) if done: print("info", info) break plt.figure(figsize=(15, 6)) plt.cla() env.render_all() plt.show()

要約する

この投稿では、Gym Anytrading 環境と stable-baselines3 ライブラリを使用して、強化学習ベースの取引ロボットを構築する方法を紹介しました。この記事は単なる出発点にすぎません。成功するトレーディング ロボットを構築するには、さまざまな要素を慎重に検討し、継続的に改善する必要があります。


<<:  持続可能なAI: イノベーションと環境責任のバランス

>>:  Appleは、来年の製品発売を目標に、独自の大規模モデルフレームワークをベースにしたApple GPTを秘密裏に開発していると噂されている。

ブログ    
ブログ    
ブログ    

推薦する

AIの革命的道: OpenAIのGPT-4ツアー

ソフトウェア開発者は OpenAI の GPT-4 を使用して複数のアプリケーションを生成し、時間の...

データベース列ストレージ: 最適な圧縮アルゴリズムを設計するための近道

データベースの保存方法によって、データベース操作の効率が決まります。51CTO データベース チャネ...

生成 AI に新しい設計アプローチが必要なのはなぜですか?

生成AIについて議論するインタビューでは、懸念から驚きまでさまざまな反応がありました。そしてベンチャ...

人工知能は工場のメンテナンスに大きな役割を果たすだろう

検出が難しい機械の故障は最もコストがかかるため、経験豊富な修理技術者の需要が高まっています。今日、多...

人間の敵の99.8%を圧倒する星間AIがネイチャー誌に登場、その技術が初めて完全公開された

StarCraft 2 のプレイヤーのうち、AI にまだ負けていないのはわずか 0.2% です。これ...

Huaweiの「ブラックテクノロジー」がついに公開。サイバーバース以外にも重要なニュースがある

8月11日はHuawei Developer Conferenceの3日目であり、カンファレンスの議...

LLaMA 2 エンドツーエンド推論が利用可能になりました。中国チームより

Buddy CompilerのエンドツーエンドLLaMA2-7B推論例がbuddy-mlirリポジト...

ロボットとAIがサプライチェーンを自動化する方法

自動化技術は現在あらゆる業界に浸透しつつあり、これはサプライチェーンにおいて特に顕著です。実際、自動...

...

20世紀の最も偉大なアルゴリズム10選

参考: 20 世紀のベスト: 編集者が選ぶトップ 10 アルゴリズム。著者:バリー・A・シプラ。アド...

人工知能は永遠の神です:それを崇拝する準備はできていますか?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

...

...

...