MITの中国人博士課程学生がChatGPTをJupyterに移行し、自然言語プログラミングをワンストップソリューションに

MITの中国人博士課程学生がChatGPTをJupyterに移行し、自然言語プログラミングをワンストップソリューションに

自然言語プログラミングは Jupyter で直接実行できます。

MIT の中国人博士課程の学生によって作成されたこのプラグインは、プログラミング ツールと GPT-4 間のシームレスな接続を実現します。

ロード後、必要なプログラムを「言う」だけで、コードを取得してデバッグし、直接実行できます。

作者はChatGPTとJupyterの名前を組み合わせてChapyterと名付けました。

Chapyter がリリースされた後、vscode ユーザーはそれを羨望の眼差しで見つめ、いつか自分たちも使えるようになることを願っていました。

作者はまた、より多くのプラットフォームに適合したバージョンが開発中であると回答した。

Jupyterで自然言語で直接プログラミング

Chapyter と以前の Colab の違いは何ですか?

開発者は表をリストしました:

Jupyter では、Chapyter は自然言語で直接プログラムを記述し、自動的に実行できます。

たとえば、フィボナッチ数列の最初の 50 項を知りたいとします。

ご覧のとおり、Chapyter はコードを提供するだけでなく、結果を直接実行します。

さらに、Chapyter は古いコードを呼び出して結果を実行し、いくつかの新しい操作を実行することもサポートしています。

たとえば、前のプログラムはいくつかのデータを生成しましたが、これらのデータを直接呼び出して視覚的なイメージを生成することができます。

写真

AI 生成コードの信頼性が低いのではないかと心配ですか?問題ありません。いつでもシームレスに手動デバッグに切り替えることができます。

写真

Chapyter で使用されるすべてのプロンプトはオープンかつ透明であり、GitHub ページの Program.py で直接確認できます。

また、Chapyter は GPT の API バージョンを使用しているため、プライバシー漏洩についてあまり心配する必要はありません。

GPT API ユーザー契約によれば、API を通じて行われた会話はモデルのトレーニングには使用されないからです。

簡単な導入

Chatpyter の導入プロセスは非常に簡単です。

Pythonとnode.jsがインストールされている環境では、コマンドラインモードで「pip install chapyter」コマンドを直接使用することでインストールを完了できます。

インストール プロセスにより Jupyter がバージョン 4.0 以上にアップグレードされ、環境が変更される可能性があることに注意してください。

インストール後、環境変数に GPT API キーと組織名を設定すると、デプロイが完了します。

使用する際は、Jupyterで「%load_ext chapyter」と入力してChapyterを起動します。

より詳細なチュートリアルについては、GitHub ページの examples ディレクトリにあるドキュメントを参照してください。

著者について

Chapyter の著者は、MIT の中国人博士課程学生、Shannon Zejiang Shen です。

彼の NLP における具体的な研究対象は、科学、法律、医学における意味理解です。

HCI の分野では、シェン氏は人間 (特に専門家) が AI モデルとどのように対話するかについても研究しています。

GitHub プロジェクト ページ: https://github.com/chapyter/chapyter/。

参考リンク:
[1] https://www.reddit.com/r/MachineLearning/comments/15269v8/p_chapyter_chatgpt_code_interpreter_in_jupyter/.
[2]https://www.szj.io/.

<<:  Meta-Transformer: マルチモーダル学習のための統一フレームワーク

>>:  AIの「冬」にご用心

ブログ    
ブログ    
ブログ    

推薦する

量子コンピュータ、数学オリンピックのための AI... これらは 2020 年のコンピュータと数学における大きな進歩です

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

IIHS:自動運転車は交通事故を3分の1しか減らせない

道路安全保険協会(IIHS)が実施した調査によると、自動運転車は期待したほど事故を減らさない可能性が...

ML アルゴリズムが製造業に及ぼす影響

製造業の企業は顧客に最高の製品とサービスを提供することを目指しており、最終的な目標は顧客を満足させ、...

1万語に及ぶ長い記事です!ディープマインドの科学者が2021年の高エネルギー研究15件をまとめる

2021 年には、より強力なコンピューティング能力、データ、モデルの助けを借りて、機械学習と自然言語...

GPT-4 に追いつく!李開復のYi-34Bの新しい結果が発表されました:勝率94.08%はLLaMA2などの主流の大型モデルを超えています

GPT-4に次ぐ、李開復のYi-34B-Chatの最新成果が発表されました——アルパカ認定モデル部門...

マイクロソフトは言語モデルをより調和のとれたものにするために複数のツールとデータセットをオープンソース化

Microsoft は最近、AI 駆動型コンテンツ モデレーション システムを監査し、AI モデルの...

...

サーバーレス コンピューティングによる機械学習の解決策は何でしょうか?

1. 機械学習とサーバーレス学習1.1. 機械学習 (ML) はアプリケーション シナリオでどのよ...

マイクロソフトは産業用メタバースプロジェクトProject Airsimを中止し、人工知能戦略をOpenAIに転換

10月25日、外国メディアは事情に詳しい関係者の話として、月曜日に「インダストリアル・メタバース」プ...

...

分散ストレージシステムのデータ分散アルゴリズムを簡単に見てみましょう。

序文分散ストレージ システムが直面する主な問題は、大量のデータを異なるストレージ ノードに分散する方...

モデルデータに偏りがある場合はどうすればいいですか?機械学習における 7 種類のデータバイアスについて 1 つの記事で学ぶ

機械学習におけるデータバイアスとは、データセットの一部の要素が他の要素よりも重み付けされ、または高く...

説明可能なAIと説明可能な機械学習:ブラックボックスに光を当てる

人工知能(AI)や機械学習の分野では、「ブラックボックス」という概念が常に大きな注目を集めています。...

F1カーがハッキングされた、人工知能技術が救世主となるのか?

それは1998年、オーストラリアF1グランプリの時のことでした。 36周目にフィンランド人ドライバー...

次世代言語モデルパラダイム LAM が登場します! AutoGPTモデルがLLMを席巻、計画、メモリ、ツールの3つの主要コンポーネントの包括的なレビュー

ChatGPT によって開始された AI の波は私たちを人工知能の時代へと導き、言語モデルは日常生活...