MITの中国人博士課程学生がChatGPTをJupyterに移行し、自然言語プログラミングをワンストップソリューションに

MITの中国人博士課程学生がChatGPTをJupyterに移行し、自然言語プログラミングをワンストップソリューションに

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

自然言語プログラミングは Jupyter で直接実行できます。

MIT の中国人博士課程の学生によって作成されたこのプラグインは、プログラミング ツールと GPT-4 間のシームレスな接続を実現します。

ロード後、必要なプログラムを「言う」だけで、コードを取得してデバッグし、直接実行できます。

作者はChatGPTとJupyterの名前を組み合わせてChapyterと名付けました。

Chapyter がリリースされた後、vscode ユーザーはそれを羨望の眼差しで見つめ、いつか自分たちも使えるようになることを願っていました。

作者はまた、より多くのプラットフォームに適合したバージョンが開発中であると回答した。

Jupyterで自然言語で直接プログラミング

Chapyter と以前の Colab の違いは何ですか?

開発者は表をリストしました:

Jupyter では、Chapyter は自然言語で直接プログラムを記述し、自動的に実行できます。

たとえば、フィボナッチ数列の最初の 50 項を知りたいとします。

ご覧のとおり、Chapyter はコードを提供するだけでなく、結果を直接実行します。

さらに、Chapyter は古いコードを呼び出して結果を実行し、いくつかの新しい操作を実行することもサポートしています。

たとえば、前のプログラムはいくつかのデータを生成しましたが、これらのデータを直接呼び出して視覚的なイメージを生成することができます。

AI 生成コードの信頼性が低いのではないかと心配ですか?問題ありません。いつでもシームレスに手動デバッグに切り替えることができます。

Chapyter で使用されるすべてのプロンプトはオープンかつ透明であり、GitHub ページの Program.py で直接確認できます。

また、Chapyter は GPT の API バージョンを使用しているため、プライバシー漏洩についてあまり心配する必要はありません。

GPT API ユーザー契約によれば、API を通じて行われた会話はモデルのトレーニングには使用されないからです。

簡単な導入

Chatpyter の導入プロセスは非常に簡単です。

Pythonとnode.jsがインストールされている環境では、コマンドラインモードで「pip install chapyter」コマンドを直接使用することでインストールを完了できます。

インストール プロセスにより Jupyter がバージョン 4.0 以上にアップグレードされ、環境が変更される可能性があることに注意してください。

インストール後、環境変数に GPT API キーと組織名を設定すると、デプロイが完了します。

使用する際は、Jupyterで「%load_ext chapyter」と入力してChapyterを起動します。

より詳細なチュートリアルについては、GitHub ページの examples ディレクトリにあるドキュメントを参照してください。

著者について

Chapyter の著者は、MIT の中国人博士課程学生、Shannon Zejiang Shen です。

彼の NLP における具体的な研究対象は、科学、法律、医学における意味理解です。

HCI の分野では、シェン氏は人間 (特に専門家) が AI モデルとどのように対話するかについても研究しています。

GitHub プロジェクト ページ: https://github.com/chapyter/chapyter/

<<:  十八龍掌:トランスフォーマーのメモリ使用量を最適化するこのスキルの組み合わせは、収集する価値があります

>>:  コードの 80% が数秒で生成されます。 AIアーティファクトCopilotがアップグレードされ、5年後には何百万人もの開発者がコードを書けるようになる

推薦する

Meta、調整可能な照明とリアルな髪を備えたリアルタイム3Dアバター合成方式を発表

2021年、Facebookは「メタバース」を主力事業とし、社名をMetaに変更した。しかし、今年は...

「地表」から「宇宙」まで、探査ロボットが未知の領域の秘密を解き明かす

ロボットは現代社会で生み出された新しい種です。科学技術の進歩により、ロボットの開発はもはや人間の能力...

...

GPT-4 MATHの精度は84.3%まで上昇しました!香港中文大学や清華大学を含むトップ7大学が新たなCSV方式を提案

大規模言語モデル (LLM) は常識理解やコード生成などのタスクでは大きな進歩を遂げていますが、数学...

MetaはAIアルゴリズムアプリケーションの透明性を高め、ユーザーに詳細な説明とより多くの選択肢を提供します。

6月30日、ソーシャルメディアプラットフォームはユーザーエクスペリエンスを向上させるためにAIアル...

Java プログラミング スキル - データ構造とアルゴリズム「ヒープ ソート」

[[389058]]ヒープソートの基本ヒープソートは、ヒープデータ構造を使用して設計されたソートア...

2020 年の世界トップ 10 AI ガバナンス イベントと変革トレンドの展望

現在、新世代の人工知能技術が世界中で急成長を遂げており、ビッグデータ、ブロックチェーン、5Gなどの新...

アプリケーション管理における AI/ML のユースケース

[[320826]]概要人工知能ベースの運用 (AIOps) は、人工知能と従来の AM/IM 運用...

「ブロックチェーン+人工知能」は医療金融やその他の応用シナリオに応用されています

最近、国家インターネット金融セキュリティ技術専門家委員会と上海振聯公司は共同で「ブロックチェーン+A...

人工知能は繊維産業の生産プロセスをデジタル化し、自動化するだろう

デジタル変革への最善のアプローチを知りたいですか? 全体的なテクノロジーを明らかにすることはできませ...

4 つの主要ビジネス分野における業界に関するインテルの詳細な洞察、アプリケーション事例、革新的な製品とソリューションの解釈 | Intel Vision

ポストパンデミックの時代において、在宅勤務によって従業員の生産性を最大限に引き出すにはどうすればいい...

労働者はなぜ人工知能を恐れるべきなのでしょうか?

人工知能の概念は何年も前から存在しています。SF映画に出てくるような高度なロボットはまだ登場していま...

スマートグリッドの重要性は何ですか?

スマートグリッドは私たちにとってどのような意義があるのでしょうか?実際のところ、私たちはスマートグリ...

...

衛星と機械学習はどのようにして海洋のプラスチック廃棄物を検出できるのでしょうか?

プラスチック廃棄物が海洋生物にとって常に恐ろしい脅威となっていることは誰もが知っているはずです。しか...