MITの中国人博士課程学生がChatGPTをJupyterに移行し、自然言語プログラミングをワンストップソリューションに

MITの中国人博士課程学生がChatGPTをJupyterに移行し、自然言語プログラミングをワンストップソリューションに

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

自然言語プログラミングは Jupyter で直接実行できます。

MIT の中国人博士課程の学生によって作成されたこのプラグインは、プログラミング ツールと GPT-4 間のシームレスな接続を実現します。

ロード後、必要なプログラムを「言う」だけで、コードを取得してデバッグし、直接実行できます。

作者はChatGPTとJupyterの名前を組み合わせてChapyterと名付けました。

Chapyter がリリースされた後、vscode ユーザーはそれを羨望の眼差しで見つめ、いつか自分たちも使えるようになることを願っていました。

作者はまた、より多くのプラットフォームに適合したバージョンが開発中であると回答した。

Jupyterで自然言語で直接プログラミング

Chapyter と以前の Colab の違いは何ですか?

開発者は表をリストしました:

Jupyter では、Chapyter は自然言語で直接プログラムを記述し、自動的に実行できます。

たとえば、フィボナッチ数列の最初の 50 項を知りたいとします。

ご覧のとおり、Chapyter はコードを提供するだけでなく、結果を直接実行します。

さらに、Chapyter は古いコードを呼び出して結果を実行し、いくつかの新しい操作を実行することもサポートしています。

たとえば、前のプログラムはいくつかのデータを生成しましたが、これらのデータを直接呼び出して視覚的なイメージを生成することができます。

AI 生成コードの信頼性が低いのではないかと心配ですか?問題ありません。いつでもシームレスに手動デバッグに切り替えることができます。

Chapyter で使用されるすべてのプロンプトはオープンかつ透明であり、GitHub ページの Program.py で直接確認できます。

また、Chapyter は GPT の API バージョンを使用しているため、プライバシー漏洩についてあまり心配する必要はありません。

GPT API ユーザー契約によれば、API を通じて行われた会話はモデルのトレーニングには使用されないからです。

簡単な導入

Chatpyter の導入プロセスは非常に簡単です。

Pythonとnode.jsがインストールされている環境では、コマンドラインモードで「pip install chapyter」コマンドを直接使用することでインストールを完了できます。

インストール プロセスにより Jupyter がバージョン 4.0 以上にアップグレードされ、環境が変更される可能性があることに注意してください。

インストール後、環境変数に GPT API キーと組織名を設定すると、デプロイが完了します。

使用する際は、Jupyterで「%load_ext chapyter」と入力してChapyterを起動します。

より詳細なチュートリアルについては、GitHub ページの examples ディレクトリにあるドキュメントを参照してください。

著者について

Chapyter の著者は、MIT の中国人博士課程学生、Shannon Zejiang Shen です。

彼の NLP における具体的な研究対象は、科学、法律、医学における意味理解です。

HCI の分野では、シェン氏は人間 (特に専門家) が AI モデルとどのように対話するかについても研究しています。

GitHub プロジェクト ページ: https://github.com/chapyter/chapyter/

<<:  十八龍掌:トランスフォーマーのメモリ使用量を最適化するこのスキルの組み合わせは、収集する価値があります

>>:  コードの 80% が数秒で生成されます。 AIアーティファクトCopilotがアップグレードされ、5年後には何百万人もの開発者がコードを書けるようになる

ブログ    
ブログ    

推薦する

...

...

「インテリジェント接続」を理解するにはこの記事で十分です!

人類社会は「つながりがない」「弱いつながり」から「賢いつながり」へと徐々に移行しつつあります。グロー...

AIは単細胞生物が脳なしで意図した方向に移動する仕組みを説明するのに役立つ

単純な生物はどのようにして特定の場所へ移動できるのか?ウィーン大学で開発された人工知能と物理モデルが...

...

これは本当に天才的ですね!パーセプトロンを組み合わせると、ニューラル ネットワークになるのではないでしょうか。

[[354709]]みなさんこんにちは。今日もディープラーニングについてお話していきましょう。クラ...

AI、IoT、VR、AR、ブロックチェーン、クラウドコンピューティングで建設業界を変革

AI、IoT、ブロックチェーン、AR、VR、クラウドコンピューティング技術が建設業界に新たな形をもた...

ディープラーニング(CNN RNN Attention)を使用して大規模なテキスト分類問題を解決する - 概要と実践

[[188373]]著者は最近、深層学習を応用してタオバオ商品のカテゴリー予測問題を解決するプロジェ...

人工知能の罪と罰についても話しましょう

1. ある人にとっての好物は、別の人にとっては毒物かもしれない人工知能 (AI) が独自の言語を作成...

アダムとイブ: ディープラーニングの問題を解決するための強力なツール

[[242433]] [51CTO.com クイック翻訳] 近年、ディープラーニングの波がインターネ...

...

人工知能は伝染病との戦いに活用できるのか?

これまで、私たちは人工知能が医療業界にどのように貢献するかについて議論してきました。新型コロナウイル...

PyTorch を軽量化します。このディープラーニング フレームワークは価値があります。 GitHub 6.6k スター

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...