AI と ML テクノロジーが人気の話題になると、デジタル トランスフォーメーションの定義とビジネス価値がさらに前進しました。 一般的なデジタル変革プロジェクトでは、数十、あるいは数百もの重要な成果物が生成されることがあります。プロジェクト管理成果物とは異なり、多くの技術的成果物は AI/ML テクノロジーの使用によって改善できます。 ここでは、AI/ML テクノロジーを活用して改善できる主要なデジタル変革プロジェクトの成果物の一部を紹介します。デジタル変革プロジェクトを計画する際には、これらの概念を取り入れることを検討してください。 データ品質の向上デジタル変革イニシアチブの成功は、高品質のデータに大きく依存します。残念ながら、多くのアプリケーション データベースのデータは高品質ではありません。データエラーを手動で分析して修正するのは、コストがかかり、時間がかかり、面倒な作業です。 エンジニアは AI/ML テクノロジーを使用して、エラーを迅速に特定し、非常に高い精度で修正を提案できます。この機能により、作業時間とコストを削減しながらデータ品質を向上させることで、デジタル変革イニシアチブの成功率を高めることができます。 データ品質の向上による利点は次のとおりです。
非構造化データから構造化データへの変換多くの組織のデータは構造化されたデータベースではなく非構造化ドキュメントに保存されているため、デジタル変革プロジェクトから価値を得ることがほとんど妨げられています。 エンジニアは AI/ML テクノロジーを使用して大量の非構造化ドキュメントを迅速に処理し、検索用語とメタデータを見つけて、それを構造化データとして保存できます。業界固有のビジネス ルール ライブラリを初期トレーニング データとして使用して、必要なモデルを開発できます。 この移行の大きな利点は次のとおりです。
ソフトウェア開発の高速化ほぼすべてのデジタル変革プロジェクトには、多くの場合データ統合作業を実行するためのカスタム ソフトウェアの開発が含まれます。 エンジニアは AIGC を使用してソフトウェア コードのドラフトを作成できます。これらのドラフトは、ソフトウェア開発者によって慎重にレビューおよびテストされる必要があります。ただし、AIGC を使用してカスタム ソフトウェアを開発すると、作業負荷が軽減され、コストが削減され、予定より早くタスクを完了できます。 AI/MLテクノロジーを活用して自動アップグレードを実現する多くの企業はすでにビジネスプロセスの少なくとも一部を自動化しており、そのメリットを享受しています。しかし、自動化されたプロセスのほとんどは非常に硬直しており、柔軟性や適応性が欠けています。 AI/ML テクノロジーを使用して自動化プロセスをアップグレードすると、自動化の次の利点が強化されます。
データ分析能力の向上多くの場合、既存のデータ分析機能では十分な価値を提供できないため、企業はデジタル変革プロジェクトに着手します。多くの場合、より大規模なアプリケーションを統合してより多くのデータを利用できるようにすることで、データ分析機能を向上させる機会があります。 エンジニアは AI/ML テクノロジーを使用してデータ分析機能を向上させ、次のようなメリットを得ることができます。
産業用IoTの自動化アップグレード多くの企業が、SCADA システムによって生成された産業用 IoT (IIoT) データを活用するアプリケーションを実装しています。 エンジニアは AI/ML テクノロジーを使用して、次のシステム間でビジネス プロセスをリアルタイムで調整し、全体的な効率を向上させることができます。
利点は次のとおりです。
データ拡張多くの場合、既存の企業データは ML モデルをトレーニングするには不十分です。トレーニング データに十分な多様性がない場合、これらのモデルのパフォーマンスは低下します。データ拡張とは、モデルがより多様なデータを参照して学習できるように、トレーニング データセット内の例の数を増やすプロセスであり、これによりデジタル変革プロジェクトを前進させることができます。 デジタル変革プロジェクトに ML テクノロジー用の高品質なトレーニング データセットの生成が含まれる場合、会社のデータを拡張して新しいデータセットを形成すると、さらなる価値がもたらされます。 サイバーセキュリティ防御デジタル変革プロジェクトでは、サイバーセキュリティを取り組みの範囲外として扱ったり、既存のサイバーセキュリティ防御をうっかり弱体化させたりすることがあります。こうした状況により、企業のサイバーセキュリティリスクが増大します。 代わりに、エンジニアは AI/ML 技術を活用してサイバーセキュリティ防御を強化できます。 AI テクノロジーは、次の方法でサイバーセキュリティ防御を強化できます。
外部データソースの検索多くの場合、企業が外部データソースを内部データソースと統合すると、デジタル変革プロジェクトの価値が高まります。 エンジニアは AIGC を使用して、企業が使用を検討すべき外部の無料、オープン ソース、有料のデータ ソースを特定できます。 AI/ML テクノロジーは、エンジニアがデジタル変革プロジェクトが企業にもたらすビジネス価値を高めるための新たな道を切り開くことができます。 |
>>: 北本重型トラック、易欧、松山湖材料研究所が「易本デュアルカーボン研究所」設立に向けた戦略協力協定を締結
[51CTO.com クイック翻訳] ディープラーニングは複雑な概念であり、その中の各要素は単純では...
スイス政府コンピュータ緊急対応センター(GovCERT)は、ボットネットTofseeが通信に使用して...
[[383142]]人工知能、またはよく耳にする AI とは、人間が作った機械が示す知能を指し、コン...
自然言語処理 (NLP) は、コンピューター サイエンスと人工知能の分野における重要な方向性です。自...
近年、需要の増加、エネルギーコストの高騰、持続可能性の問題が続く中、データセンターが注目を集めていま...
今日、私たちの AI は何ができるでしょうか? AI による描画、AI による作曲、AI による動画...
インターネット トラフィックの配当が薄れるにつれ、広告およびマーケティング業界は既存の市場シェアをめ...
2011年、Google DeepMindの共同創設者であるシェーン・レッグは、2028年までにAI...
[[221813]] [51CTO.com クイック翻訳] JavaScript 開発者は、さまざま...
6月30日、瑞傑ネットワークス株式会社(以下、瑞傑ネットワークス)と合肥美的智能科技有限公司(以下...
[51CTO.com クイック翻訳]パーソナライズされた付加価値サービスに対するユーザーの需要に対応...
人類が地球上の食物連鎖の頂点に上り詰め、さらには宇宙の探査を続けられるようになったのは、個人の脳だけ...
COVID-19 パンデミックにより、企業はデジタル変革の取り組みを数か月、場合によっては数年も加速...
IT Homeは2月27日、2024年のモバイル・ワールド・コングレスでマイクロソフトのブラッド・ス...