フーリエ演算子効率トークンミキサー: 軽量ビジュアルネットワークの新しいバックボーン

フーリエ演算子効率トークンミキサー: 軽量ビジュアルネットワークの新しいバックボーン

1. 背景

近年、Transformer、Large-kernel CNN、MLP に基づく 3 つのビジュアル バックボーン ネットワークは、世界規模での効率的な情報融合機能により、幅広い CV タスクで目覚ましい成功を収めています。

既存の主流ニューラル ネットワークである Transformer、CNN、MLP は、それぞれ独自の方法でグローバル トークンの融合を実現します。その中で、Transformer ネットワークの自己注意メカニズムは、クエリとキーのペアの関連性をトークン融合の重みとして使用します。 CNN はカーネル サイズを大きくすることでトランスフォーマーと同様のパフォーマンスを実現します。 MLP は、すべてのトークン間の完全な接続を通じて、もう 1 つの強力なパラダイムを実装します。これらの方法はすべて効果的ですが、計算の複雑度が高く (O (N^2))、ストレージと計算能力が限られているデバイスに展開するのが難しいため、多くのモデルの適用範囲が制限されます。

2. AFFトークンミキサー:軽量、グローバル、適応型

計算コストのかかる問題を解決するために、研究者らは適応型フーリエフィルタ (AFF) と呼ばれる効率的なグローバル トークン融合演算子を構築しました。フーリエ変換によりトークンセットを周波数領域に変換し、周波数領域でコンテンツ適応型フィルタマスクを学習して、周波数領域空間に変換されたトークンセットに対して適応型フィルタリング操作を実行します。

論文: 効率的なグローバル トークン ミキサーとしての適応型周波数フィルタ

リンク: https://arxiv.org/abs/2307.14008

周波数領域畳み込み定理によれば、元の領域での畳み込み演算は、フーリエ領域での対応するアダマール積演算と数学的に同等です。これにより、本研究で提案された AFF トークン ミキサーは、トークン セットのサイズと同じ空間解像度を持つ動的畳み込みカーネルを使用して元のドメインでトークン フュージョンを実行することと数学的に同等になり (下の右側のサブ図を参照)、グローバル スケールでコンテンツ適応型トークン フュージョンを実行する機能を備えています。

周知のとおり、動的畳み込みには高い計算オーバーヘッドが伴い、大きな空間解像度を持つ動的畳み込みカーネルを使用するオーバーヘッドは、効率的で軽量なネットワーク設計にとってさらに受け入れがたいものと思われます。ただし、この記事で提案されている AFF トークン ミキサーは、上記の利点を同時に満たす低電力の同等の実装として使用でき、複雑さが O (N^2) から O (N log N) に削減され、計算効率が大幅に向上します。

図 1: AFF モジュールと AFFNet ネットワークの概略図。

3. AFFNet: 新しい軽量ビジュアルネットワークバックボーン

研究者らは、AFF Token Mixer をメインのニューラル ネットワーク オペレーターとして使用し、AFFNet と呼ばれる軽量ニューラル ネットワークを構築しました。広範囲にわたる実験により、AFF Token Mixer は、視覚的意味認識や高密度予測タスクを含む幅広い視覚タスクにおいて、優れた精度と効率のトレードオフを実現することが示されています。

4. 実験結果

研究者らは、提案されたAFFトークンミキサーとAFFNetを、視覚的意味認識、セグメンテーション、検出などの複数の視覚タスクで評価し、現在の研究分野における最先端の軽量ビジュアルバックボーンネットワークと比較しました。実験結果は、本研究で提案されたモデル設計が幅広い視覚タスクで優れたパフォーマンスを発揮することを示しており、提案された AFF トークン ミキサーが軽量で効率的な新世代のトークン融合演算子として潜在的可能性を検証しています。

図 2: ImageNet-1K データセットの Acc-Param、Acc-FLOPs 曲線と SOTA との比較。

表1: ImageNet-1KデータセットにおけるSOTAとの比較

表 2: 下流タスク (視覚検出とセグメンテーション) と SOTA の比較。

5. 結論

この研究結果は、潜在空間における周波数領域変換が、ニューラルネットワークにおけるグローバル適応トークン融合の効率的かつ低電力の同等の実装であるグローバル適応トークン融合の役割を果たすことができることを数学的に証明しています。これにより、ニューラル ネットワークにおけるトークン融合演算子の設計に関する新しい研究アイデアが生まれ、また、ストレージと計算能力が限られたエッジ デバイス上にニューラル ネットワーク モデルを展開するための新しい開発スペースも生まれます。

<<:  マルチモーダル世界モデルで未来を予測!カリフォルニア大学バークレー校の新しいAIエージェントは人間の言語を正確に理解し、SOTAを刷新する

>>: 

ブログ    
ブログ    
ブログ    

推薦する

人工知能が防犯カメラの機能を強化している

今日、セキュリティという言葉を聞くと、それは通常、サイバーセキュリティ、特に人工知能に関するものにな...

AIと5Gテクノロジーがスマートグリッドのセキュリティ課題解決に貢献

[[334279]]この記事の主な内容:マイクログリッド、発電機、太陽光パネルなどのスマートグリッド...

ドローン技術はスマートシティの発展をどのように促進できるのでしょうか?

今日、都市化は世界の多くの地域で進んでおり、人口が増加する中、環境への影響を減らしながら増大する課題...

人工知能分野で最も有望な技術トップ10

2018年世界ロボット会議が北京で開催され、ロボット産業の最先端技術が披露されました。世界的なロボ...

...

近い将来、人工知能は多くの人々の仕事を置き換えることになるだろう

清華大学金融学科教授の李道奥氏は、ハーバード大学で経済学の博士号を取得。スタンフォード大学フーバー研...

Metaは、メタバース内の肖像画がぼやけないようにするための新しい仮想背景処理AIを開発しました

COVID-19パンデミックが始まって以来、私たちのほとんどは友人、同僚、家族とのリモートビデオ通話...

...

スマートホームテクノロジーが不動産業界に及ぼす影響

最近では、最新のスマートホームテクノロジーがプリインストールされている住宅を目にすることがますます一...

米シンクタンクの報告書:中国のAI人材流出、大半が米国へ

中国のAI研究者の数は過去10年間で10倍に増加したが、そのほとんどは海外、主に米国に居住している。...

調査:ブラジルのAIスタートアップの50%以上がサンパウロ州に拠点を置く

ブラジルの新たな調査によると、人工知能関連の製品やサービスの開発に注力している企業の半数以上がサンパ...

2023年の人工知能に関する6つの予測

現在の AI ブームと展望に基づいて、2023 年の AI に関して専門家が予測する 6 つの点を紹...

スマート製造技術:効率的な生産の未来?

2020年の初め以来、工業および製造業はCOVID-19パンデミックの影響を受けています。工場は、...

...