機械学習の導入を成功させるための3つのヒント

機械学習の導入を成功させるための3つのヒント

人工知能の時代において、機械学習、自然言語処理 (NLP)、認知検索技術が急速に導入されているのは当然のことです。組織は価値の創造、顧客体験の向上、厳しい規制の遵守、競合他社との差別化に努める中で、知識労働者に対して他の通常とは異なる要求を課すことも増えています。多くの場合、必要なデータと知識はサイロ化され、セグメント化され、断片化されています。その結果、適切な情報を適切なタイミングで表示したり、データ内の複雑なパターンを発見したりすることが難しくなります。

NLP、機械学習、検索テクノロジーを慎重に組み合わせることで、これらの組織は課題に対応し、これまでにない方法でエンタープライズ データを活用できるようになります。このテクノロジーは、これまでよりも高速、正確、かつ思慮深い新世代の情報アクセスを効果的に実現します。正常に実装されると、組織は真に情報主導となり、すべての従業員と顧客のエクスペリエンスが最適化されます。この変化は、専門家、企業、業界の運営方法を再定義し、急速に新たな競争上の優位性となりつつあります。しかし、企業はどのようにしてこれらのテクノロジーをうまく導入するのでしょうか?

1. ユーザーの目標に合わせる

こうしたタイプのテクノロジーの採用を促進するには、各ユーザーの個々のニーズに合わせて実装する必要があります。特定のユーザーのニーズを満たすには適切なデータを抽出する必要があることは明らかですが、そのデータはユーザーの目標に関連したものになるように直感的かつタイムリーな方法で提示する必要もあります。データ主導の時代は情報主導の経済に移行しつつあり、データから有用な洞察を得ることが重要になります。ユーザーのニーズを満たすということは、データを収集し、それを適切な方法で充実させ、業界だけでなくユーザー組織のローカル言語でさらに文脈化し、結果として得られた情報をユーザーの目標に沿った方法で提示することを意味します。

[[220712]]

各ユーザーの目標とニーズは異なるため、すべての人に適した万能のアプローチは存在しません。たとえば、顧客サービスの分野では、顧客を満足させ、さらには喜ばせるために、顧客サービス担当者 (CSR) には知識主導型であることがますます求められています。一方、製造業や医薬品開発業界では、研究者は専門家と簡単につながることができるため、プロフェッショナルである必要があります。そして、すべては情報ドライブから始まります。

2. 簡単な作業を行う

組織にとって、企業データにコンテキストを組み込むことで物事をシンプルにすることが重要です。これにより、知識労働者は現在のタスクに関連する情報を簡単に見つけて発見できるようになります。コンテキストをマージするということは、分散したリポジトリ内の関連データ間の接続を作成し、略語や同義語を考慮して、言語を表現できるさまざまな方法をすべて認識することを意味します。

データ、特に非構造化データでは、自然言語処理 (NLP) と人間の推論を通じて、より多くのコンテキストを追加する機会があります。現代のテクノロジーによって可能になったこれらの手法により、データを充実させ、意味のあるつながりを作ることができます。非構造化データの管理ではなく、より価値のある方法でそれを活用することが重要になります。組織はさまざまなオプションを通じて情報主導を追求できます。

[[220713]]

3. ビジネス環境にテクノロジーを統合する

ユーザーがテクノロジーに没頭するのではなく、認知検索などのテクノロジーをユーザーのビジネス環境に統合する必要があります。コグニティブ検索などのテクノロジーは、オンプレミスかクラウドかを問わず、あらゆる種類の内部データと外部データを含む、エンタープライズ データ ソースの大部分を活用する必要があります。したがって、システムは高度にスケーラブルである必要があります。 Salesforce のように、データを単一のシステムにロードまたは入力する必要があるソフトウェア パッケージとは異なり、没入型ソリューションは、分散リポジトリからのデータを安全かつスケーラブルな方法で活用します。これにより、ビジネス プロセスが合理化され、知識労働者は日常的なタスクに費やす時間を減らし、重要な問題に集中する時間を増やすことができます。

この変革により、組織は既存の知識から学び、時間の経過とともに賢くなることで、将来の課題を解決する上で大きな優位性を獲得します。

<<:  ビル・ゲイツ:中国がAIで他国を追い抜くとは思わない

>>:  北京の平昌冬季オリンピック閉会式にAIとモバイクの自転車シェアリングが8分間強制的に介入

ブログ    
ブログ    
ブログ    

推薦する

人工知能は教育にどのような変化をもたらすのでしょうか?

[[441080]]経済観察記者 鄭躍新12月16日、中国教育部元副部長で中国教育国際交流協会会長...

新しいヘルスケアソリューション: ヘルスケアにおける AI と IoT が認知症患者をどのように支援できるか

年齢を重ねるにつれて、私たちの体はさまざまな病気や障害に悩まされるようになります。それはまるで逆方向...

マトリックスシミュレーション! Transformer の大型モデルの 3D 視覚化。GPT-3 と Nano-GPT の各層がはっきりと見える

「マトリックスシミュレーション」の世界は本当に存在するかもしれない。人間のニューロンをシミュレートし...

モザイクから高精細画像まで、AIの画像作成能力は強化されてきましたが、美しさと歪みのバランスをどう実現するのでしょうか。

サスペンスやSF作品では、ぼやけた写真がコンピューターの画面に表示され、捜査官が画像を強調するように...

...

UAE、AIガバナンスに関する世界的合意を求める

UAEの人工知能、デジタル経済、リモートワークアプリケーション担当国務大臣オマール・オラマ氏は先週、...

データ サイエンティストまたは AI エンジニアになるために独学するにはどうすればよいでしょうか?これらの9つのポイントを克服する必要があります

誰もが教室でデータサイエンス、人工知能、機械学習を学ぶ時間があるわけではありませんし、誰もがこれらの...

ビッグデータナレッジグラフの実践経験のまとめ

データサイエンティストとして、業界の新しい知識グラフをまとめ、技術専門家と共有し、ビッグデータの知識...

...

AIがコロナホールを発見し宇宙天気予報を自動化

オーストリアのグラーツ大学、スコルテック社、そして米国とドイツの科学者らは、宇宙からの観測からコロナ...

...

【文字列処理アルゴリズム】回文判定のアルゴリズム設計とCコード実装

1. 要件の説明文字列を入力し、その文字列が回文であるかどうかを判断するプログラムを作成します。便宜...

絶賛されていたGPT-3が充電開始します!ネットユーザー:値段が高す​​ぎる。もう行っちゃった。

少し前に絶賛されたGPT-3を覚えていますか?招待されたユーザーのみがテスト・使用できるもので、史上...

53ページのPDFが広く出回り、中核社員が次々と退職。OpenAIにはどんな秘密があるのか​​?

「OpenAIが2027年にAGIを実現する」という53ページのPDFがインターネット上で広く流通...

びっくり! 7万時間の訓練を経て、OpenAIのモデルは「Minecraft」で木材の設計を学習した。

最近、GPTを忘れてしまったかのようなOpenAIが新たなアイデアを思いつきました。大量のラベルなし...