機械学習の導入を成功させるための3つのヒント

機械学習の導入を成功させるための3つのヒント

人工知能の時代において、機械学習、自然言語処理 (NLP)、認知検索技術が急速に導入されているのは当然のことです。組織は価値の創造、顧客体験の向上、厳しい規制の遵守、競合他社との差別化に努める中で、知識労働者に対して他の通常とは異なる要求を課すことも増えています。多くの場合、必要なデータと知識はサイロ化され、セグメント化され、断片化されています。その結果、適切な情報を適切なタイミングで表示したり、データ内の複雑なパターンを発見したりすることが難しくなります。

NLP、機械学習、検索テクノロジーを慎重に組み合わせることで、これらの組織は課題に対応し、これまでにない方法でエンタープライズ データを活用できるようになります。このテクノロジーは、これまでよりも高速、正確、かつ思慮深い新世代の情報アクセスを効果的に実現します。正常に実装されると、組織は真に情報主導となり、すべての従業員と顧客のエクスペリエンスが最適化されます。この変化は、専門家、企業、業界の運営方法を再定義し、急速に新たな競争上の優位性となりつつあります。しかし、企業はどのようにしてこれらのテクノロジーをうまく導入するのでしょうか?

1. ユーザーの目標に合わせる

こうしたタイプのテクノロジーの採用を促進するには、各ユーザーの個々のニーズに合わせて実装する必要があります。特定のユーザーのニーズを満たすには適切なデータを抽出する必要があることは明らかですが、そのデータはユーザーの目標に関連したものになるように直感的かつタイムリーな方法で提示する必要もあります。データ主導の時代は情報主導の経済に移行しつつあり、データから有用な洞察を得ることが重要になります。ユーザーのニーズを満たすということは、データを収集し、それを適切な方法で充実させ、業界だけでなくユーザー組織のローカル言語でさらに文脈化し、結果として得られた情報をユーザーの目標に沿った方法で提示することを意味します。

[[220712]]

各ユーザーの目標とニーズは異なるため、すべての人に適した万能のアプローチは存在しません。たとえば、顧客サービスの分野では、顧客を満足させ、さらには喜ばせるために、顧客サービス担当者 (CSR) には知識主導型であることがますます求められています。一方、製造業や医薬品開発業界では、研究者は専門家と簡単につながることができるため、プロフェッショナルである必要があります。そして、すべては情報ドライブから始まります。

2. 簡単な作業を行う

組織にとって、企業データにコンテキストを組み込むことで物事をシンプルにすることが重要です。これにより、知識労働者は現在のタスクに関連する情報を簡単に見つけて発見できるようになります。コンテキストをマージするということは、分散したリポジトリ内の関連データ間の接続を作成し、略語や同義語を考慮して、言語を表現できるさまざまな方法をすべて認識することを意味します。

データ、特に非構造化データでは、自然言語処理 (NLP) と人間の推論を通じて、より多くのコンテキストを追加する機会があります。現代のテクノロジーによって可能になったこれらの手法により、データを充実させ、意味のあるつながりを作ることができます。非構造化データの管理ではなく、より価値のある方法でそれを活用することが重要になります。組織はさまざまなオプションを通じて情報主導を追求できます。

[[220713]]

3. ビジネス環境にテクノロジーを統合する

ユーザーがテクノロジーに没頭するのではなく、認知検索などのテクノロジーをユーザーのビジネス環境に統合する必要があります。コグニティブ検索などのテクノロジーは、オンプレミスかクラウドかを問わず、あらゆる種類の内部データと外部データを含む、エンタープライズ データ ソースの大部分を活用する必要があります。したがって、システムは高度にスケーラブルである必要があります。 Salesforce のように、データを単一のシステムにロードまたは入力する必要があるソフトウェア パッケージとは異なり、没入型ソリューションは、分散リポジトリからのデータを安全かつスケーラブルな方法で活用します。これにより、ビジネス プロセスが合理化され、知識労働者は日常的なタスクに費やす時間を減らし、重要な問題に集中する時間を増やすことができます。

この変革により、組織は既存の知識から学び、時間の経過とともに賢くなることで、将来の課題を解決する上で大きな優位性を獲得します。

<<:  ビル・ゲイツ:中国がAIで他国を追い抜くとは思わない

>>:  北京の平昌冬季オリンピック閉会式にAIとモバイクの自転車シェアリングが8分間強制的に介入

ブログ    
ブログ    

推薦する

2020年職場のAIスキルランキング:TensorFlowが人気上昇、Pythonが最も人気、マーケティング部門も学習中

2020年まで残り1ヶ月となりました。最近、オンライン教育ウェブサイトのUdemyは、受講生のコース...

2024年のデータセンターのトレンド: より高温、より高密度、よりスマート

今日のデータセンター業界は、AI テクノロジーの急速な普及、ムーアの法則の減速、そして厄介な持続可能...

顔認識はあなたの家の玄関からどれくらい離れていますか?

最近、Google Chinaは新たなPR活動を開始した。そのひとつは、Zhihuで「AIが私たちの...

パドルパドル中国ツアーは、中小企業のソフトウェアおよびハードウェア製品の革新の需要に応えるために深センに上陸しました

AI応用の時代において、人工知能技術は研究室から産業化へと移行しています。人工知能が徐々に製品応用市...

古代都市ポンペイを「ハイテク」な方法で訪れるにはどうすればいいでしょうか?

ビッグデータダイジェスト制作著者: カレブ西暦79年、ベスビオ山が噴火し、その麓にあったポンペイの街...

見ないと後悔するよ! 2019年の人工知能業界の25の主要トレンド

[[257459]]著名なベンチャーキャピタル調査機関である CB Insights は、2019 ...

あなたは私の目です!人工知能が障害者にバリアフリーのインターネットアクセスを提供する

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

スマート物流が一般的なトレンドであり、ロボット、ドローン、5Gの価値が強調されている

近年、電子商取引経済の急速な発展と人々の生活水準の継続的な向上により、物流の需要が急増していますが、...

AI モデルのデータセンターのエネルギー消費を効果的に削減するにはどうすればよいでしょうか?

人工知能をより良くするための競争において、MIT リンカーン研究所は、電力消費の削減、効率的なトレー...

AIが医療画像診断を強化し、潜在的な病気が隠れる場所をなくす

【51CTO.comオリジナル記事】 [[376669]]医療は人々の生活に関わる最も重要な問題の一...

4kスター、AIが強化学習でポケモンをプレイ、2万ゲームを経て勝利に成功

「ポケモン」の話をすると眠くならなくなりましたか? 「Pokemon」は「ポケモン」の非公式翻訳です...

具現化された知能の新時代! VLAは、UIナビゲーションとロボット操作を備えた最強の基本モデルMagmaを歓迎します

既存の大規模言語モデル、画像生成モデルなどは、少数のモーダルデータに対してのみ動作し、人間のように物...

...

人工知能と医師が出会ったら何が起こるかを伝える7つの短編物語

[[187416]] Huxiu 注: この記事は、4 月 3 日に The New Yorker ...