Meta は 9 月 4 日に、研究者がコンピューター ビジョン モデルのバイアスを確認するのに役立つことを目的とした、FACET と呼ばれるオープン ソース データセットをリリースしました。 Metaはブログ投稿で、現在のベンチマーク方法を使用してAIの公平性を評価することは難しいと詳しく説明した。 Meta 氏によると、FACET は、研究者がさまざまな種類のコンピューター ビジョン モデルを監査するために使用できる大規模な評価データセットを提供することで、このタスクを簡素化します。 「データセットは、5万人の32,000枚の画像で構成されており、専門の人間の注釈者によって、性別の表現、年齢層の認識などの人口統計学的属性、肌の色、髪型などの追加の身体的属性、バスケットボール選手、医師などの人物関連カテゴリでラベル付けされています」とMetaの研究者はブログ投稿で詳しく説明しています。「FACETには、SA-1Bの69,000枚のマスクの人物、髪、衣服のラベルも含まれています。」 研究者は、FACET でコンピューター ビジョン モデルに写真を処理させることにより、公平性の問題を調べることができます。そこから分析を実行し、モデルの結果の精度が写真ごとに異なるかどうかを判断できます。このような精度のばらつきは、AI が偏っていることの兆候である可能性があります。 研究者たちはこのデータセットを使って、類似した画像をグループ化する分類作業に最適化されたニューラル ネットワークの偏りを検出することができます。さらに、物体検出モデルの評価も容易になります。このモデルは、写真内の興味のあるアイテムを自動的に検出するように設計されています。 FACET は、インスタンス セグメンテーションとビジュアル グラウンディングという 2 つの特殊なオブジェクト検出タスクを実行する AI アプリケーションも監査できます。インスタンス セグメンテーションは、写真内の興味のある項目を、その周囲にボックスを描画するなどして強調表示するプロセスです。一方、ビジュアル ベース モデルは、ユーザーが自然言語で説明するオブジェクトを写真からスキャンするニューラル ネットワークです。 「FACETは研究評価目的のみを想定しており、トレーニングには使用できませんが、データセットとデータセットエクスプローラーをリリースする目的は、FACETをコンピュータービジョンモデルの標準的な公平性評価ベンチマークにすることです」とMetaの研究者は述べています。 |
<<: モデルトレーニング: AIと機械学習の最適化とDevOpsツールの利用の改善
時間と空間を結びつけるのは速度であり、エネルギーと質量を結びつけるのも速度です。事実と価値を結びつけ...
千人の人々の目には千のハムレットがいる。主観的な違いにより、人間には何千万通りもの異なる美的嗜好が存...
コンピュータが人間の囲碁の名人と対戦していたとき、コンピュータは数年連続で世界チャンピオンに勝つこと...
2024 年に向けて、CIO は生成型 AI の可能性とリスクを考慮してデジタル アジェンダを再構築...
[[374390]]人工知能 (AI) は、組織によって競争上の優位性を獲得するための重要なテクノロ...
現実には、あらゆる種類の印刷されたテキストや、周囲のあらゆるものを何の障害もなく簡単に読むことができ...
ビッグデータ技術が今や世界の主要なマーケティングツールの 1 つになっていることは周知の事実です。 ...
[[404642]]この記事はWeChatの公開アカウント「roseduanの執筆場所」から転載した...
[[200702]] 250年以上にわたり、技術革新は経済発展の根本的な原動力となってきました。これ...
デジタルヒューマンと共存できるサイバーパンクの世界への準備はできていますか?将来の仮想世界で多くのア...
[中国、上海、2018年10月10日] 第3回HUAWEI CONNECT 2018(ファーウェイ・...