データ汚染はAIシステムにとってますます大きな脅威となっている

データ汚染はAIシステムにとってますます大きな脅威となっている

ハッカーが制御を強めるために生成 AI モデルに偽の情報を挿入するなど、データ汚染の増加により AI システムの信頼性に対する懸念が高まっています。一度注入されると、汚染されたデータは広範囲にわたる影響を及ぼす可能性があり、ユーザーがこれらの AI システムを使用する際に誤った情報やエラーが発生する可能性があります。

データポイズニングとは何ですか?

「データ ポイズニング」という用語は、データベースまたはコンピューティング システムが有害なデータや悪意のあるデータによって侵害されたときに何が起こるかを説明するためによく使用されます。データ ポイズニングは、情報セキュリティの分野における重要な概念です。これは、システムに損害を与えるために、データを悪意を持って改ざん、操作、または挿入する行為を指します。データ ポイズニングには、次のようなさまざまな形態があります。

SQL インジェクション:これは、ハッカーが入力フィールドに悪意のある SQL クエリを挿入してデータベースからデータを取得したり、不適切な操作を実行したりしようとする、一般的なデータ汚染の形式です。

クロスサイト スクリプティング (XSS):攻撃者は Web ページに悪意のあるスクリプト コードを挿入し、ユーザーのブラウザーにこれらのスクリプトを実行させます。これにより、ユーザーの情報が盗まれたり、その他の悪意のある操作が実行されたりする可能性があります。

悪意のあるファイルのアップロード:攻撃者は、サーバーによって実行され、システムが攻撃される可能性のある悪意のあるコードを含むファイルをアップロードします。

悪意のあるデータの入力:攻撃者は、フォームまたは入力フィールドに悪意のあるデータを入力してアプリケーションの正常な動作を妨害し、アプリケーションをクラッシュさせたり不適切なアクションを実行させたりすることができます。

NoSQL インジェクション: SQL インジェクションに似ていますが、ターゲットは NoSQL データベースであり、攻撃者は適切に検証されていないユーザー入力を悪用してデータベース操作を妨害しようとします。

データ汚染はAIシステムにとってますます大きな脅威となっている

データ汚染は、データ漏洩、システムクラッシュ、悪意のある操作、情報盗難などのセキュリティ問題につながる可能性があります。データ汚染を防ぐために、開発者とシステム管理者は、ユーザー入力の検証とサニタイズ、アクセス制御の実装、潜在的な攻撃対象領域を減らすための安全なプログラミング手法の使用など、厳格なセキュリティ対策を講じる必要があります。さらに、定期的なセキュリティ監査と脆弱性スキャンも、データ汚染を防ぐ効果的な手段です。

データ汚染に対抗するために、専門家は特定の予防策を講じることを推奨しています。ウェブサイトを信頼する前に、その信頼性を確認することをお勧めします。信頼できる情報源に固執することでリスクを軽減できます。さらに、ユーザーは、よく知らない Web サイトで個人情報を共有する際には注意する必要があります。

生成 AI モデルには独自の課題があります。当初、彼らはデリケートな問題や危険な問題に触れないように訓練されていますが、それでも誤った情報を提供するように操作される可能性があります。ユーザーの誤りを正すことと誤情報の拡散を防ぐことの間で適切なバランスをとることは、依然として課題となっています。

ディープフェイク技術は、画像や音声を操作して説得力のある偽のコンテンツを作成するという新たな脅威です。この手法は、虚偽の情報を広め、評判を傷つけるために使用される可能性があります。

政策提言の面では、これらの問題に対処するためにさまざまな行動が提案されています。これには、AI の開発と応用に関する明確なガイドラインと倫理基準の確立、AI プロバイダーに説明責任を負わせるためのレジストリの作成、AI 研究への政府の関与の促進などが含まれます。これらすべてと並行して、ディープフェイクコンテンツや誤情報の拡散を軽減するための監視機関を設立することも検討されています。

<<:  ChatGPTのメタバージョンが登場: Llama 2がサポートされ、Bing検索に接続され、ザッカーバーグがライブでデモを実施

>>:  マイクロソフトは低コストのAIモデルを見つけるために多方面に賭けている

ブログ    
ブログ    

推薦する

ガートナーは、世界の人工知能ソフトウェア市場が2022年に620億ドルに達すると予測している。

[[437857]]ガートナーは、世界の人工知能(AI)ソフトウェアの収益が2022年に625億米...

2018 年の人工知能の予測を振り返ってみると、どれが現実になったのでしょうか?

人工知能は非常に複雑であり、急速に発展しています。今後数年間でそれがどうなるかを正確に予測することは...

ニューラルネットワークのトレーニングではCPUはGPUより10倍以上高速。インテル:行列演算はもう使わない

ディープラーニングやニューラルネットワークの分野では、研究者は通常、GPU なしでは作業できません。...

人々が家に座っていて、車が道路を走っています。自動運転は信頼できるのでしょうか?

これまで、無人運転車は基本的にテレビや映画でしか耳にしませんでした。現在、無人運転車の技術は長い間実...

テレンス・タオは数学の問題を解くために大規模なモデルを使用しています。コードの生成とLaTeXの数式の編集は非常に便利です。

過去数か月間、数学者のテレンス・タオ氏は、ChatGPT を使用して数学の問題を解くのに何度も試み、...

...

...

馬化騰氏は「人工知能の4つの主要な発展傾向が今後10年間で世界を変えるだろう」と述べた。

今後10年間で世界を変える人工知能の4つの主要な発展トレンドの分析61歳のビル・ゲイツ氏は大学卒業生...

鍵となるのは人工知能コンピューティングセンターを構築し、それを活用することだ

デジタル経済の発展に伴い、全国の各省市がコンピューティングインフラの構築を競って推進し、人工知能コン...

...

インテリジェントタイミング、画像認識…AIがあなたの春節旅行をエスコートします!

毎年恒例の春節旅行シーズンがまたやって来ました。チケットは手に入れましたか?休暇を申請しましたか?あ...

アンサンブル法からニューラルネットワークまで:自動運転技術で使用される機械学習アルゴリズムとは?

現在、機械学習アルゴリズムは、自動運転車業界で増加している問題を解決するために大規模に使用されていま...

ASO チュートリアル: 評価とダウンロードの最適化と Google Play ストアのランキング アルゴリズム

この ASO チュートリアル シリーズを初めて読む場合は、最初の記事から始めることをお勧めします。 ...

2021年世界人工知能会議の結論によって、どのような新しいトレンドが明らかになるのでしょうか?

7月10日、2021年世界人工知能会議(WAIC)が上海で閉幕した。 2011年以来、ビッグデータ...