10月9日のニュースによると、AIビッグモデルは近年、人工知能の分野で話題になっており、リアルなテキストや画像を生成したり、人間と流暢に会話したりするなど、さまざまな驚くべき機能を実現できるという。しかし、これらの大規模モデルの背後には、生データにラベルを追加し、AI テクノロジーのトレーニングに必要な膨大なデータを提供するために日々懸命に取り組んでいる無名のデータ ラベラーのグループが存在します。 データラベラーの仕事は簡単ではありません。退屈な作業、低収入、長期的な不安定さ、いつでも交代されるリスクに直面しなければなりません。彼らは AI 技術の発展の礎ですが、注目や尊敬を受けることはほとんどありません。 Tech Planet によると、データラベラーへの支払いは最も原始的な出来高制で行われ、ほとんどの従事者は月に 5,000 元以下の収入しか得られない。彼らの中には大学を卒業した人もいれば、母親になった人もいれば、転職した人もいます。彼らは、第3、第4級都市のキュービクルで画像、テキスト、音声などのデータを処理し、大手インターネット企業や自動車会社にサービスを提供しています。 IT Home は、データ ラベリング業界も浮き沈みを経験していることに気づきました。 AI技術への期待が急上昇していた2017年には、データラベラーは2Dフレーム描画で50セントという高収入を得ることができました。しかし、業界内の競争が激化し、技術の発展が遅れているため、データラベリングの単価はどんどん下がり、現在では最低でも4セントしかありません。 データラベリング企業も大きなプレッシャーに直面しています。元からの注文を獲得するためには、一定の規模と資金的余裕が必要であり、回収期間が長い、従業員の離職率が高い、品質やサイクルが不安定などの問題を抱えている。海天瑞盛は現在、データラベリング業界で初めてメインボードに上場した企業である。昨年の利益率は10%を超えたばかりだったが、今年上半期は赤字に陥った。 データラベラーにとってさらに心配なのは、自分たちが作成に協力した AI によってすぐに置き換えられるかもしれないということだ。国内外のいくつかの企業では、市場で主流の大規模モデルを使用してデータセットにラベルを付け、データを自動的にラベル付けできるツールを開発しています。これらのツールは、ラベル付けの効率を向上させ、コストを削減し、手作業に近いかそれ以上の精度を実現すると主張しています。 もちろん、すべてのデータラベル付けを AI で置き換えることはできません。医療、金融、自動運転などの分野など、専門知識と論理的分析能力を必要とする一部のデータラベリングには、依然として人間の参加が必要です。しかし、これは業界の敷居が上がり続けることも意味します。データラベラーがこの業界で生き残りたいのであれば、さらなる学習と努力が必要になるかもしれません。 |
<<: 金融規制当局が注意喚起:「AIによる顔の改変」などの新たな詐欺手法に注意
>>: クロスモーダルトランスフォーマー: 高速かつ堅牢な 3D オブジェクト検出に向けて
[[250357]]フェイフェイ・リー氏は去り、グーグルAI中国センターのリー・ジア所長も去った。...
最近、テクノロジー分野の多くの人々がコンピューティング能力について懸念しています。 OpenAI C...
マイクロソフトは、動画や画像に基づいて感情を識別するサービスを含む、人工知能を活用した顔認識ツールの...
北京時間2月15日、海外メディアの報道によると、大規模な人工ニューラルネットワークに基づく人工知能は...
人工知能 (AI) は、自然科学のさまざまな分野を網羅しており、主に特定の種類の知的な人間の活動をモ...
ビジネスニーズを予測するには、AI を活用し、研究開発を新たなレベルに引き上げる必要があります。この...
[[255991]]継続的な学習と継続的な開発は、主流の IT 業界のプログラマーにとって日常的な...
昨年から、AIの普及に関わる仕事がたくさん必要になりました。私は長い間、ディープラーニングがなぜ特に...
今では、ほとんどの人が携帯電話を持つことに慣れています。しかし、携帯電話の盗聴を扱った映画のように、...
[[429517]]簡単なシミュレーション問題、ぜひ挑戦してみてください!配列を偶数/奇数でソート...
科学技術の世界では、大きな技術的進歩が一夜にして起こることはめったになく、多くの場合、何十年にもわた...
過去数年間、多くのゲーム機はアクセサリを導入することでゲーム体験を向上させることに重点を置いてきまし...