JVM チューニングの概要: 基本的なガベージ コレクション アルゴリズム

JVM チューニングの概要: 基本的なガベージ コレクション アルゴリズム

ガベージ コレクション アルゴリズムは、さまざまな観点から分類できます。

基本的なリサイクル戦略によれば

参照カウント:

古いリサイクルアルゴリズム。原則として、このオブジェクトには参照があり、それによってカウントが増加し、参照を削除するとカウントが減少します。ガベージ コレクション中は、カウントが 0 のオブジェクトのみが収集されます。このアルゴリズムの最も致命的な問題は、循環参照の問題を処理できないことです。

マークスイープ:

このアルゴリズムは 2 段階で実行されます。最初のステージでは、参照ルート ノードから始まるすべての参照オブジェクトをマークし、2 番目のステージではヒープ全体を走査してマークされていないオブジェクトをクリアします。このアルゴリズムではアプリケーション全体を一時停止する必要があり、メモリの断片化が発生します。

コピー:

このアルゴリズムは、メモリ空間を 2 つの等しい領域に分割し、一度に 1 つの領域のみを使用します。ガベージ コレクション中、現在使用されている領域が走査され、使用中のオブジェクトが別の領域にコピーされます。このアルゴリズムは、使用中のオブジェクトのみを毎回処理するため、コピーコストは比較的小さくなります。同時に、コピー後にメモリを適切にソートできるため、「断片化」の問題は発生しません。もちろん、このアルゴリズムの欠点も明らかです。つまり、メモリスペースが 2 倍必要になるということです。

マークコンパクト:

このアルゴリズムは、「マーク アンド スイープ」アルゴリズムと「コピー」アルゴリズムの両方の利点を組み合わせたものです。これも 2 つのステージに分かれています。最初のステージでは、ルート ノードから始まる参照されているすべてのオブジェクトをマークします。2 番目のステージでは、ヒープ全体を走査し、マークされていないオブジェクトをクリアし、生き残ったオブジェクトをヒープの 1 つの部分に「圧縮」して、順序どおりに配置します。このアルゴリズムは、「マークアンドスイープ」アルゴリズムの断片化の問題を回避し、「コピー」アルゴリズムのスペースの問題も回避します。

治療方法によって分けられる

増分収集:アプリケーションの実行中にガベージ コレクションを実行するリアルタイム ガベージ コレクション アルゴリズム。何らかの理由で、JDK5.0 のコレクターはこのアルゴリズムを使用しません。

世代別収集:オブジェクトのライフ サイクルの分析に基づくガベージ コレクション アルゴリズム。オブジェクトは若い世代、古い世代、永久世代に分けられ、異なるライフサイクルでオブジェクトをリサイクルするために異なるアルゴリズム (上記の方法のいずれか) が使用されます。現在のガベージ コレクター (J2SE1.2 以降) はすべてこのアルゴリズムを使用します。

システムスレッド別

シリアル コレクション:シリアル コレクションでは、単一のスレッドを使用してすべてのガベージ コレクション作業を処理します。マルチスレッドのやり取りが必要ないため、実装が簡単で、比較的効率的です。ただし、複数のプロセッサを活用できないという制限も明らかであるため、このコレクションはシングルプロセッサ マシンに適しています。もちろん、このコレクターは、データ量が少ない (約 100 MB) マルチプロセッサ マシンでも使用できます。

並列コレクション:並列コレクションでは、複数のスレッドを使用してガベージ コレクション作業を処理するため、処理が高速かつ効率的になります。理論的には、CPU の数が多いほど、並列コレクターが発揮できる利点は多くなります。

同時実行コレクション:シリアル コレクションや並列コレクションと比較すると、前 2 つはガベージ コレクションを実行するときにオペレーティング環境全体を一時停止する必要があり、ガベージ コレクション プログラムのみが実行されます。そのため、ガベージ コレクション中にシステムは明らかな一時停止状態になり、ヒープが大きくなるにつれて一時停止時間が長くなります。

オリジナルリンク: http://pengjiaheng.iteye.com/blog/520228

【編集者のおすすめ】

  1. JVM チューニングの概要: ガベージ コレクションが直面する問題
  2. JVM チューニングの概要: いくつかの概念
  3. Java GUIで書かれた描画ボードプログラム
  4. Javaの動的バインディングメカニズム
  5. Java でのチェックボックス付きツリーの実装と応用

<<:  JVM チューニングの概要: 新世代のガベージ コレクション アルゴリズム

>>:  ソートアルゴリズムを簡単に学ぶ: よく使われるソートアルゴリズムを視覚的に体験

ブログ    
ブログ    

推薦する

Java プログラミング スキル - データ構造とアルゴリズム「マージ ソート」

[[393503]]基本的な紹介マージソートは、マージの考え方を使用するソート方法です。このアルゴ...

...

IBMとNASAが炭素排出量追跡のためのオープンソースAIモデルを発表

IBM は最近、NASA と提携して、炭素排出量の追跡を改善し、気候変動の影響を監視するための新しい...

MetaがCMUと提携して最も強力な「汎用ロボットエージェント」を開発するのに2年かかりました。

爆発的な人気を博している大規模モデルは、「汎用ロボットエージェント」に関する研究を再構築しています。...

...

AIが「ツール人」を救う: RPA+AIがすべてを自動化

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

AIがコンピューティングをエッジに押し上げる

[[408175]]ここ数年の流行語といえば、エッジ コンピューティングは 5G や AI と密接に...

世界シミュレーターはAGIの最終成果、12の状況予測です!チーフエキスパートによる1万語の記事がソラのマイルストーンを専門的に解釈

私はここ数日、Sora の技術レポートと Sora のさまざまな技術分析を読んできました。基本的な視...

ビジョンと AI を追加することで、産業用ロボットはスマート製造をより効果的に支援できるでしょうか?

改革開放から30年、中国は科学技術の進歩の分野で非常に重要な役割を果たしてきました。人口ボーナス、政...

データ汚染はAIシステムにとってますます大きな脅威となっている

ハッカーが制御を強めるために生成 AI モデルに偽の情報を挿入するなど、データ汚染の増加により AI...

マスターカードがAIを活用して詐欺を阻止し、誤ったチャージバックを削減する方法

【51CTO.com クイック翻訳】チェックアウト時に銀行カード取引が拒否されると、イライラしたり恥...

...

...

ディープラーニングの限界を理解していますか?

[[205696]]簡単なコメント: AI、機械学習、ディープラーニングは近年注目されている分野で...