APIセキュリティへのAIの適用

APIセキュリティへのAIの適用

最近では、セキュリティ業界のほぼあらゆるところで人工知能 (AI) の話題が取り上げられています。確かに、人工知能はホットな話題です。多くのトレンドトピックと同様に、このトピックについてもかなりの話題と誇大宣伝が巻き起こっています。突然、出会う人すべてが AI を大いに活用しているように思えます。

ご想像のとおり、これにより AI の話題に関してかなりの混乱が生じます。特に、AI がいつ価値を付加できるのか、それとも単に話題性や誇大宣伝のために使われているだけなのかを理解するのは難しい場合があります。しかし、話題や誇大宣伝を超えて、AI が有用な方法で創造的に問題を解決するために使用されていることをどのように知ることができるのでしょうか?

私の経験では、AI は特定の問題に適用された場合に最も効果を発揮します。言い換えれば、AI は、それが適している特定の問題を解決するために、慎重かつ戦略的に、そして計画的に使用する必要があります。こうした問題は数多くありますが、API セキュリティは、AI が良い結果を生み出すことを経験した問題の 1 つです。

AI を活用して API セキュリティを向上させる 5 つの方法を見てみましょう。

  1. API 検出: AI を使用して API 要求と応答のデータを調査できます。動作分析を実行して、これまで不明だった API エンドポイントを検出できます。これまで知られていなかった API が発見されると、資産インベントリ、資産管理、セキュリティ ポリシー、セキュリティ監視アクティビティに組み込むことができます。このように、API 検出は全体的な API セキュリティに重要な貢献をします。
  2. アーキテクチャの適用/アクセス制御: AI が API 要求と応答のデータを調査するため、API の検出以外にもさまざまな利点があります。特定の API エンドポイントのパターンを学習して適用し、学習したパターンからのその後の逸脱を観察して軽減することができます。リクエストとレスポンスのサイズ、データの有無によるレイテンシ、リクエストとエラーのレート、レスポンスのスループットなどのメトリックに正確に適合する関数を生成することができます。これらのメトリックからの逸脱も観察して軽減することができます。これにより、API エンドポイント全体のアクセス制御機能が向上します。アーキテクチャを強制し、アクセス制御を改善する機能は、全体的な API セキュリティに大きく貢献します。
  3. 機密データの公開: API リクエストと応答データを AI が調査するもう 1 つの利点は、転送中の機密データを識別できることです。これには、公開されている個人識別情報 (PII) を検出してフラグを立てることが含まれます。個人情報(PII)を含む機密データの漏洩は、ほとんどの企業にとって重大なリスクとなります。機密データの漏洩を検出して軽減する能力を向上させることで、API の全体的なセキュリティを向上させることができます。
  4. レイヤー 7 DDoS 保護: ほとんどの企業はレイヤー 3 と 4 で DDoS 保護を行っていますが、レイヤー 7 では行っていない場合があります。 API の場合、ほとんどのアクションはレイヤー 7 で発生します。したがって、AI を活用することで、レイヤー 7 での API エンドポイントの誤用や悪用を防ぐことができます。 AI を使用して、エンタープライズ API エンドポイントから収集されたメトリックとログ データを分析できます。 API エンドポイントの動作の継続的な分析とベースライン設定を通じて生成される可視性により、異常に関する洞察とアラートが提供され、それを使用してレイヤー 7 保護ポリシーを生成することができます。レイヤー 7 DDoS 保護が強化され、API セキュリティも強化されます。
  5. 悪意のあるユーザーの検出: 悪意のあるユーザーや顧客は、ほとんどの企業にとって重大なリスクをもたらします。 API エンドポイントとのやり取りを含む、企業とのすべてのクライアントのやり取りを時間の経過とともに分析し、外れ値を特定できます。各クライアントには、特定の API エンドポイントとのすべてのやり取りに基づいてリスク スコアが与えられます。各顧客の特定の活動に応じて、顧客の脅威レベルは時間の経過とともに上昇または下降します。これらの悪意のあるユーザー/クライアントをどのように処理するかを定義するためのポリシーとプロセスを導入できます。これにより、API セキュリティを向上させる新たな道が開かれます。

今日、AI と API のセキュリティは、ほとんどのセキュリティ専門家にとって最優先事項となっています。 AI については多くの議論や誇大宣伝が行われていますが、AI はセキュリティ プログラムに多大な価値を付加できるテクノロジーです。当然のことながら、多くのテクノロジーと同様に、AI は適切な特定の問題に適用された場合に最も効果を発揮します。私の経験では、API セキュリティはこうした問題の 1 つです。 AI を API セキュリティに慎重かつ戦略的に体系的に適用することで、企業は全体的なセキュリティ体制を改善できます。

<<:  情報フローシナリオにおけるAIGCの実践

>>:  Baidu は革命を起こしました!

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

興奮はテレビシリーズに匹敵、マスク氏とウルトラマン、そしてOpenAIとの「愛憎関係」

最近、マスク氏がOpenAIを訴えたというニュースがテクノロジー界に再び波紋を巻き起こしている。 1...

2D ガール ジェネレーター、駆動可能なニューラル ネットワーク... 2019 年の優れた機械学習プロジェクト 17 選

2019 年のベスト オープンソース プロジェクトを選択するために、Medium のネットユーザーが...

ゼロサンプルに主眼が置かれています! ReSimAD: 自動運転で 3D ドメイン適応を実現するには?

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

DAMOアカデミーAIが中国科学技術博物館に展示され、AIが認識した初のCOVID-19 CTスキャンが科学技術による防疫努力の歴史的証人となる

5月29日、全国科学技術労働者の日が近づく中、アリババDAMOアカデミーのAIによって識別されラベル...

銀行における機械学習の応用シナリオは何ですか?

1. 機械学習プラットフォームとビッグデータプラットフォームの関係の明確化[[346643]]機械...

スタンフォード大学は4年連続でAIレポートを発表しています。今年はどんな内容が取り上げられたのでしょうか?

2021年スタンフォードAIインデックスレポートが正式にリリースされ、過去1年間のAIの全体的な発...

国連チーフAIアドバイザーとの独占インタビュー:AIは完璧だと期待しているが、決して完璧ではない

[[384962]]ビッグデータダイジェスト制作出典: informationweek編纂者:張大毓...

コストを70%削減する秘訣: これらの企業はAIをコスト効率よく活用する方法を見つけました

過去 6 か月間で、ChatGPT によってもたらされた AI の人気は誰もが直感的に感じることがで...

インテリジェントなケアに加えて、感情的なニーズもあります。人工知能と高齢者ケアについてお話ししましょう。

2017年は「人工知能」が輝きました。ディープラーニング「AlphaGo」が柯潔に勝利し、無人運転...

自動化と人工知能の違いをご存知ですか?

自動化の一般的な定義は、機械化と電動化の最高レベルであり、つまり、機械、設備、機器はすべて、指定され...

JD.com がオープンソースの顔認識ツールキットを公開: 最も強力なモデルをカバーし、トレーニングとスコアの実行をサポート

近年、ディープラーニングをベースとした顔認識技術は大きな進歩を遂げています。しかし、顔認識モデルの実...

...

大規模な山火事をどうやって消火するか?ドローンがコンビネーションパンチを繰り出す!

環球時報などの報道によると、春の干ばつ、少雨、強風の影響で、18日にモンゴルで草原の山火事が発生した...

2021年チューリング賞発表:高性能コンピューティングの先駆者であり、TOP500スーパーコンピューティングリストの共同創設者であるジャック・ドンガラが受賞

丸一日待った後、ついに答えが明らかになりました!先ほど、2021年のチューリング賞が発表されました。...

...