初のヒューマンモーションキャプチャーモデルをリリース! SMPLer-X: 7つのチャートを一掃

初のヒューマンモーションキャプチャーモデルをリリース! SMPLer-X: 7つのチャートを一掃

表現力豊かな人間の姿勢と形状の推定 (EHPS) の分野では大きな進歩が遂げられていますが、最も先進的な方法は依然として限られたトレーニング データセットによって制限されています。

最近、南洋理工大学のS-Lab、SenseTime、上海人工知能研究所、東京大学、IDEA研究所の研究者らが、人間の全身の姿勢と体型を推定するタスク向けに、初めて大型モーションキャプチャモデルSMPLer-Xを提案した。この研究では、さまざまなデータソースから最大 450 万のインスタンスを使用してモデルをトレーニングし、7 つの主要リストで新たな最高パフォーマンスを達成しました。

SMPLer-X は、一般的なボディ モーション キャプチャに加えて、顔や手の動きを出力したり、体の形状を推定したりすることもできます。

論文リンク: https://arxiv.org/abs/2309.17448

プロジェクトホームページ: https://caizhongang.github.io/projects/SMPLer-X/

SMPLer-X は、大量のデータと大規模なモデルを備え、さまざまなテストやランキングで優れたパフォーマンスを示し、未知の環境でも優れた一般化性を備えています。

1. データ拡張に関しては、研究者らはモデルトレーニングの参考として32個の3D人間データセットを体系的に評価・分析した。

2. モデルのスケーリングに関しては、このタスクでモデルパラメータの数を増やすことでもたらされるパフォーマンスの向上を研究するために、大規模な視覚モデルを使用します。

3. SMPLer-X の一般的な大規模モデルは、微調整戦略を通じて専用の大規模モデルに変換でき、さらなるパフォーマンスの向上を実現できます。

要約すると、SMPLer-X はデータのスケーリングとモデルのスケーリングを調査し (図 1)、32 の学術データセットをランク付けし、450 万のインスタンスのトレーニングを完了し、7 つの主要リスト (AGORA、UBody、EgoBody、EHF など) で新たな最先端のパフォーマンスを確立しました。

図1 データ量とモデルパラメータ数の増加は、主要リスト(AGORA、UBody、EgoBody、3DPW、EHF)の平均主誤差(MPE)の低減に効果的である。

既存の3D人間データセットの一般化に関する研究

研究者らは 32 の学術データセットをランク付けしました。各データセットのパフォーマンスを測定するために、そのデータセットを使用してモデルをトレーニングし、AGORA、UBody、EgoBody、3DPW、EHF の 5 つの評価データセットで評価しました。

異なるデータセット間の比較を簡単にするために、平均一次誤差 (MPE) も表に計算されています。

データセット一般化研究から学んだ教訓

多数のデータセット(図 3)の分析から、次の 4 つの結論を導き出すことができます。

1. 単一データセットのデータ量に関しては、100,000 インスタンスのデータセットをモデルトレーニングに使用することで、高い費用対効果を実現できます。

2. データ収集シナリオに関しては、野外データセットが最も効果的です。屋内でしか収集できない場合は、トレーニング効果を高めるために単一のシナリオを避ける必要があります。

3. データセットの収集に関しては、上位 3 つのデータセットのうち 2 つは生成されたデータセットであり、生成されたデータは近年優れたパフォーマンスを示しています。

4. データセットの注釈に関しては、疑似ラベル付きデータセットもトレーニングにおいて重要な役割を果たします。

大規模なモーションキャプチャモデルのトレーニングと微調整

現在の最先端の方法は、通常、少数のデータセット(MSCOCO、MPII、Human3.6M など)のみを使用してトレーニングされますが、この論文では、より多くのデータセットの使用を検討しています。

4 つのデータ サイズが使用され、常にランクの高いデータセットが優先されます。トレーニング セットとして 5、10、20、および 32 のデータセットが使用され、合計サイズは 750,000、150 万、300 万、および 450 万のインスタンスになります。

さらに、研究者らは、一般的な大規模モデルを特定のシナリオに適応させるための低コストの微調整戦略も実証しました。

上記の表には、AGORA テスト セット (表 3)、AGORA 検証セット (表 4)、EHF (表 5)、UBody (表 6)、EgoBody-EgoSet (表 7) など、主なテストの一部が示されています。

さらに、研究者らは、ARCTIC と DNA-Rendering という 2 つのテスト セットでモーション キャプチャの大規模モデルの一般化も評価しました。

研究者たちは、SMPLer-X がアルゴリズム設計を超えたインスピレーションをもたらし、学術界に強力な全身人間モーション キャプチャ モデルを提供することを期待しています。

コードと事前トレーニング済みモデルはオープンソースです。詳細については、プロジェクトのホームページをご覧ください: https://caizhongang.github.io/projects/SMPLer-X/

結果

<<:  北京大学チーム:大規模なモデルで「幻覚」を誘発するために必要なのは、文字化けしたコードの文字列だけです!大きなアルパカも小さなアルパカもすべて影響を受けた

>>: 

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

IDC:中国のAIパブリッククラウド市場は2022年にトレンドに逆らって成長し、成長率は80.6%になる

最近、IDCは「IDC中国AIパブリッククラウドサービス市場シェア、2022」レポートを発表しました...

6 つの大きな障害に直面していますが、AI イノベーションはそれらをうまく克服できるでしょうか?

現状では、人工知能業界は消費者からの需要が大きく、投資家からの関心も高く、非常に活況を呈しているよう...

...

アルゴリズム実装からMiniFlow実装まで、機械学習のためのインフラプラットフォームを構築

ビッグデータ、クラウドコンピューティング、ディープラーニングと比較すると、インフラストラクチャはあま...

今後5年間で人気が高まり、就職時の給与も高くなる3つの専攻

大学で何を専攻するかは、慎重に考える必要があります。結局のところ、大学の専攻の選択は私たちの将来の発...

2017 年に最も価値のある機械学習のスキルや知識は何ですか?

2017 年に最も価値のある機械学習スキルはどれでしょうか? Quora の 2 つの回答では、最...

李開復氏独占インタビュー:10年後には人間の仕事の50%がAIに置き換えられる

「人工知能は急速に発展し、10年以内に人間の仕事の50%がAIに置き換えられるだろう」。シノベーショ...

COVID-19 最新情報: COVID-19 との戦いに役立つトップ 10 のイノベーション

[[320870]]迅速な感染検査から3Dプリントソリューションまで、世界中のテクノロジー企業が協力...

...

Nature: 光コンピューティングと AI 推論を統合して高速かつ高帯域幅の AI コンピューティングを実現

電子コンピューティングと比較すると、光コンピューティングは高速、高帯域幅、低消費電力という利点があり...

...

人工知能、モノのインターネット、新エネルギーなどへの投資ガイド。

12月21日、百度と華為は包括的な戦略提携を発表した。両者は中国市場とユーザーエクスペリエンスに重...