初のヒューマンモーションキャプチャーモデルをリリース! SMPLer-X: 7つのチャートを一掃

初のヒューマンモーションキャプチャーモデルをリリース! SMPLer-X: 7つのチャートを一掃

表現力豊かな人間の姿勢と形状の推定 (EHPS) の分野では大きな進歩が遂げられていますが、最も先進的な方法は依然として限られたトレーニング データセットによって制限されています。

最近、南洋理工大学のS-Lab、SenseTime、上海人工知能研究所、東京大学、IDEA研究所の研究者らが、人間の全身の姿勢と体型を推定するタスク向けに、初めて大型モーションキャプチャモデルSMPLer-Xを提案した。この研究では、さまざまなデータソースから最大 450 万のインスタンスを使用してモデルをトレーニングし、7 つの主要リストで新たな最高パフォーマンスを達成しました。

SMPLer-X は、一般的なボディ モーション キャプチャに加えて、顔や手の動きを出力したり、体の形状を推定したりすることもできます。

論文リンク: https://arxiv.org/abs/2309.17448

プロジェクトホームページ: https://caizhongang.github.io/projects/SMPLer-X/

SMPLer-X は、大量のデータと大規模なモデルを備え、さまざまなテストやランキングで優れたパフォーマンスを示し、未知の環境でも優れた一般化性を備えています。

1. データ拡張に関しては、研究者らはモデルトレーニングの参考として32個の3D人間データセットを体系的に評価・分析した。

2. モデルのスケーリングに関しては、このタスクでモデルパラメータの数を増やすことでもたらされるパフォーマンスの向上を研究するために、大規模な視覚モデルを使用します。

3. SMPLer-X の一般的な大規模モデルは、微調整戦略を通じて専用の大規模モデルに変換でき、さらなるパフォーマンスの向上を実現できます。

要約すると、SMPLer-X はデータのスケーリングとモデルのスケーリングを調査し (図 1)、32 の学術データセットをランク付けし、450 万のインスタンスのトレーニングを完了し、7 つの主要リスト (AGORA、UBody、EgoBody、EHF など) で新たな最先端のパフォーマンスを確立しました。

図1 データ量とモデルパラメータ数の増加は、主要リスト(AGORA、UBody、EgoBody、3DPW、EHF)の平均主誤差(MPE)の低減に効果的である。

既存の3D人間データセットの一般化に関する研究

研究者らは 32 の学術データセットをランク付けしました。各データセットのパフォーマンスを測定するために、そのデータセットを使用してモデルをトレーニングし、AGORA、UBody、EgoBody、3DPW、EHF の 5 つの評価データセットで評価しました。

異なるデータセット間の比較を簡単にするために、平均一次誤差 (MPE) も表に計算されています。

データセット一般化研究から学んだ教訓

多数のデータセット(図 3)の分析から、次の 4 つの結論を導き出すことができます。

1. 単一データセットのデータ量に関しては、100,000 インスタンスのデータセットをモデルトレーニングに使用することで、高い費用対効果を実現できます。

2. データ収集シナリオに関しては、野外データセットが最も効果的です。屋内でしか収集できない場合は、トレーニング効果を高めるために単一のシナリオを避ける必要があります。

3. データセットの収集に関しては、上位 3 つのデータセットのうち 2 つは生成されたデータセットであり、生成されたデータは近年優れたパフォーマンスを示しています。

4. データセットの注釈に関しては、疑似ラベル付きデータセットもトレーニングにおいて重要な役割を果たします。

大規模なモーションキャプチャモデルのトレーニングと微調整

現在の最先端の方法は、通常、少数のデータセット(MSCOCO、MPII、Human3.6M など)のみを使用してトレーニングされますが、この論文では、より多くのデータセットの使用を検討しています。

4 つのデータ サイズが使用され、常にランクの高いデータセットが優先されます。トレーニング セットとして 5、10、20、および 32 のデータセットが使用され、合計サイズは 750,000、150 万、300 万、および 450 万のインスタンスになります。

さらに、研究者らは、一般的な大規模モデルを特定のシナリオに適応させるための低コストの微調整戦略も実証しました。

上記の表には、AGORA テスト セット (表 3)、AGORA 検証セット (表 4)、EHF (表 5)、UBody (表 6)、EgoBody-EgoSet (表 7) など、主なテストの一部が示されています。

さらに、研究者らは、ARCTIC と DNA-Rendering という 2 つのテスト セットでモーション キャプチャの大規模モデルの一般化も評価しました。

研究者たちは、SMPLer-X がアルゴリズム設計を超えたインスピレーションをもたらし、学術界に強力な全身人間モーション キャプチャ モデルを提供することを期待しています。

コードと事前トレーニング済みモデルはオープンソースです。詳細については、プロジェクトのホームページをご覧ください: https://caizhongang.github.io/projects/SMPLer-X/

結果

<<:  北京大学チーム:大規模なモデルで「幻覚」を誘発するために必要なのは、文字化けしたコードの文字列だけです!大きなアルパカも小さなアルパカもすべて影響を受けた

>>: 

ブログ    
ブログ    
ブログ    

推薦する

ニューラル放射フィールドはポイントベースで、NeRFよりも30倍高速なトレーニング速度と優れたレンダリング品質を備えています。

2020 年はボリューメトリック ニューラル レンダリングが爆発的に普及する年です。たとえば、Ne...

テンセントクラウドのフルリンクAI開発者サービスシステムがAIと産業の融合を加速

12月15日、第1回テンセントクラウド+コミュニティ開発者会議で、テンセントクラウドの副社長である王...

2020年のロボットとドローンに関する7つの予測

IDCの最新予測によると、ロボットシステムとドローンへの総支出は2020年に1,287億ドルに達し、...

人類はついに怠惰なAIを生み出してしまった…

強化学習 (RL) の概念を説明する記事は多数ありますが、現実世界で RL を実際に設計して実装する...

...

人工知能が初めて小児脳腫瘍治療薬の開発に貢献

専門家は、この画期的な進歩により、人工知能を使って新たながん治療法を開発するという新しい時代が到来す...

90年代以降の世代初登場!何凱明と孫建のチームが未来科学賞を受賞し、ResNetは18万回引用された。

先ほど、2023年未来科学賞の受賞者が発表されました!今年の「数学およびコンピューターサイエンス賞」...

...

機械学習が戦略ゲームを改善する方法

[[390356]]ポジティブなゲーム体験を生み出すために、ゲームデザイナーはゲーム内のバランスを繰...

2021 年の人工知能と自動化のトレンド

[[430280]]特にリモートワークの増加と労働力不足により従来の労働パターンが変化する中、多くの...

...

...

畳み込みニューラルネットワークの簡単な説明

畳み込みニューラルネットワークネットワーク構造図図2 畳み込みニューラルネットワークの構造図畳み込み...

DeepMind のニューラル ネットワーク記憶研究を分析: 動物の脳をシミュレートして継続的な学習を実現する

1. はじめにインターネットに溢れる AI 関連の情報の大半は、一般の人向けに進歩を説明するものと、...

数量を増やして価格を下げます! OpenAIが史上最強のChatGPTをリリース。誰でもGPTをカスタマイズ可能。GPTストアは今月開始予定

まもなく、すべての GPT コレクションが GPT ストアを通じてアクセスできるようになります。はい...