人工知能が都市景観をどう変えるのか

人工知能が都市景観をどう変えるのか

人工知能 (AI) とディープラーニングはあらゆるところに存在し、今や都市の景観を一変させる可能性を秘めています。景観画像を分析するディープラーニング モデルは、都市計画者が再建計画を視覚化して美観を向上させ、コストのかかるミスを防ぐのに役立ちます。ただし、これらのモデルが効果を発揮するには、画像内の要素を正確に識別して分類する必要があり、これはインスタンス セグメンテーションと呼ばれる課題です。この課題は、正確な「グラウンドトゥルース」画像ラベルを生成するには、手間のかかる手動セグメンテーションが必要となるため、適切なトレーニング データが不足していることから生じます。しかし、最近発表された論文によると、あるチームがその答えを見つけたかもしれないとのことだ。

人工知能による革新的な合成データの生成

大阪大学の研究者たちは、大量のデータを必要とするモデルを訓練するために人工知能ベースのコンピューターシミュレーションを使用することで、この問題の解決策を考案しました。彼らのアプローチでは、都市のリアルな 3D モデルを作成して、実際のセグメンテーションを生成します。次に、画像間モデルは、グラウンドトゥルースデータに基づいて現実的な画像を生成します。このプロセスにより、実際の都市に似たリアルな画像データセットが生成され、正確に生成されたグラウンドトゥルースラベルが完備されるため、手動でのセグメンテーションが不要になります。

合成データはこれまでもディープラーニングに使用されていましたが、そのアプローチは異なり、都市構造シミュレーションを使用して現実世界のモデルに十分なトレーニングデータを作成します。実際の都市の 3D モデルを手順的に生成し、ゲーム エンジンを使用してセグメント化された画像を作成することで、生成的敵対ネットワークをトレーニングし、形状を現実世界の都市のテクスチャを持つ画像に変換して、ストリート ビュー画像を生成することができました。

利点と将来の展望

このアプローチにより、実際の建物の公開データセットが不要になり、画像内で重なり合っている場合でも個々のオブジェクトを分離できるようになります。高品質なトレーニング データを生成すると同時に、人手を大幅に削減します。その有効性を検証するために、研究者らはシミュレートされたデータでセグメンテーション モデルをトレーニングし、それを実際のデータでトレーニングされたモデルと比較しました。 AI モデルは、大規模でユニークな建物を含むインスタンスでも同様の性能を発揮しましたが、データセットの準備時間が大幅に短縮されました。

研究者たちは、さまざまな条件下での画像間モデルのパフォーマンスを向上させることを目指しています。彼らの成果は、トレーニングデータの不足を解決するだけでなく、データセットの準備に関連するコストも削減し、ディープラーニングを活用した都市景観づくりの新時代への道を開きます。

<<:  データとAIが現代の人事慣行をどのように変えているのか

>>:  あなたのデータ戦略は GenAI に対応していますか?

ブログ    

推薦する

eMule プロトコル スライス選択アルゴリズムの分析

ダウンロードはデータの送信であることはご存じのとおりです。この点に関しては、すでに合意内容について多...

ソフトウェア開発プロセスは、路上でのスマートカーの安全な運行を保証するものである。

2021年に入り、自動車の道路事故率を減らし、運転プロセスの快適性を向上させる先進運転支援システム...

...

陳作寧院士:人工知能モデルとアルゴリズムの7つの発展傾向

新しいものに直面したとき、あなたはそれに適応しますか、学びますか、拒否しますか、それとも無視しますか...

ニューヨーク大学のチームは、自然言語を使ってチャットボットChatGPTを使ってマイクロプロセッサをゼロから設計した。

6月19日、生成型人工知能がハードウェア設計などの分野に参入し始めました。最近、ニューヨーク大学の...

韓信は本当に数学の達人なのでしょうか?古代中国の数学にヒントを得たコンピュータ暗号化アルゴリズム

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能変革の転換点をどう乗り越えるか

Milvus は、オープンソースの人工知能エコシステムにデータ サービス機能を提供するオープンソース...

人工知能がITを変える5つの方法

IT サービス デスクからデータ分析の最前線、新しいツール、戦略、関係まで、AI は IT 組織をど...

人工知能における非構造化データの役割

人工知能 (AI) システムは人間に似た方法でやり取りするため、一部の人は不安に思うかもしれませんが...

...

...

フロントエンド: JavaScript でのバイナリ ツリー アルゴリズムの実装

[[359197]]次に、js データ構造のツリーを調べてみましょう。ここでのツリーは、幹と枝を持つ...

ディープラーニング? 「ブラックボックス」である必要はない

ディープニューラルネットワークのパラメータネットワークは非常に大きく複雑であり、これによりマシンはこ...

機械学習アルゴリズムのコレクション: ベイズ学習からディープラーニングまで、それぞれの長所と短所

私たちが日常生活で使用する推奨システム、インテリジェントな画像美化アプリケーション、チャットボットな...

...