爆発!ローカル展開、複数のAIモデル間の簡単な切り替え

爆発!ローカル展開、複数のAIモデル間の簡単な切り替え

私は週末に AI で遊んでいて、個人的な知識ベースをローカルに展開しています。基本的には OpenAI のオープン インターフェースに基づいてパッケージ化されていますが、小さなモデルを自分でローカルに展開することもできます。

これら 2 つの要件は、初心者プレイヤーにとっては高すぎると感じます。1 つは科学的なインターネット アクセスが必要であり、もう 1 つはローカルに展開できるようにコンピューターにハイエンドのグラフィック カードが搭載されていることが必要です。

今日は大ヒット商品 gpt_academic をご紹介します。GPT-3、GPT-4、Claude-2 などの海外モデルや、Wenxin Yiyan、Xinghuo、Tongyi Qianwen などの国内大型モデルで遊ぶことができます。

1. 展開プロジェクト

1. 前提条件

docker-compose 経由で起動するといつも問題が発生します。イメージの問題のはずです。この問題を見ると、多くの人が質問しているので、ソースコードに従って直接起動します。

Python 環境をローカルにインストールする必要があります。これについては詳しく説明しません。インターネット上には多くのチュートリアルがあります。

2. ダウンロードとインストール

gpt_academic の GitHub アドレス: https://github.com/binary-husky/gpt_academic

上記のURLにアクセスして直接ダウンロードしてください(Gitをインストールせずに)

写真

ダウンロードしたら、対応する Python プロジェクトの場所に解凍します。起動しようとすると、多くのコンポーネントが表示され、インストールする必要があります。プロンプトに従って、1 つずつインストールできます。

3. 国内モデルの構成

国内の大規模モデルが比較的単純な場合、マッピング関係は次のようになります。

会社

モデル名

アイフライテック スパーク

スパーク、スパークv2、スパークv3

同義に関する千の質問

クウェン

百度千帆

千帆

ジープAI

ジプアイ

ここでは、iFlytek Spark を例に挙げます。主な理由は、iFlytek の実名登録で Spark Large Model 3.0 のトークンが 200 万個プレゼントされるからです。

写真

実名登録後、Spark API 情報を取得し、config.py ファイルに対応する Spark モデル構成に入力します。

写真

最後に、config.py の AVAIL_LLM_MODELS プロパティに sparkv3 モデルを入力します。

写真

この方法でプロジェクトを直接開始できます。

4. 海外モデルの構成

外部モデルの使用はより複雑です。プロキシを設定し、check_proxy.py ファイルを実行して問題がないか確認する必要があります。

ここでは、Clash ソフトウェアを例として使用し、プロキシ ポートを確認し、プロキシ ページでグローバル モードに切り替えます。

写真

上記で取得したローカル ポートを config.py ファイルに設定し、次の 2 か所を変更します。

  1. OpenAIキーを入力してください
  2. ローカルプロキシポートを変更します。私のは http://127.0.0.1:7890 です。

写真

check_proxy.py ファイルを実行した結果が次のとおりであれば、合格です。それ以外の場合は、設定を調整する必要があります (使用するソフトウェアが異なるため、自分で解決できます)。

写真

5. 実践的な応用

マルチモデル出力(複数の AI モデルを同時にクエリする)を使用する場合は、設定を変更する必要があります。

 # 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4" # 默认MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3" MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&sparkv3

ここでは、gpt-3.5-turbo と sparkv3 を設定します。さらにモデルがある場合は、すべてを設定することもできます。

次に main.py ファイルを実行します。正常に実行されると、http://localhost:29717 ページが自動的にポップアップ表示されます。ポートは毎回ランダムです。

写真

右上隅でさまざまなモデルを切り替えることができます。デフォルトのモデルは gpt-3.5 です。 Spark モデルに切り替えて効果を確認してみましょう。

写真

ページの右下隅で、複数のモデルを試すように選択し、結果が同時に出力されることがわかります。

写真

ここでファイルの内容を直接入力することもでき、AI がそれを要約するのに役立ちます。実際には、ファイルの内容をテキストに変換してモデルに送信し、最終的に要約ファイルを返します。

写真

2. 結論

まだ多くの機能があるので、探索してみてください。 Java プロジェクト全体をインポートしようとしましたが、返されたのは各ファイルのコード解釈のみで、実際にはあまり役に立ちませんでした (150,000 トークンかかり、面倒でした)。

<<:  オープン語彙検出オープンワールド物体検出コンペティション2023優勝チームソリューション共有

>>:  OpenAIの内部抗争による被害はまだまだ終わっていない

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

ChatGPT「コードインタープリター」が正式リリースされました! 30秒で写真を動画に変え、口を動かしてショーを作りましょう

家族よ、ついに来たぞ!先ほど、ChatGPT「コードインタープリター」ベータ版がすべてのPlusユー...

ザッカーバーグ氏がCharacter.AIの1:1レプリカである仮想チャットAIをリリース?ユーザーの不満: 設定が古すぎる

ユーザーがTikTokにどんどん奪われ、毎日のアクティブユーザー数が減り続けているという現実に直面し...

2019 AIIA開発者会議記者会見が北京で開催

10月10日、2019 AIIA人工知能開発者会議の記者会見が北京で開催されました。 2019年AI...

TensorFlow を使用してシンプルなロジスティック回帰モデルをゼロから構築する

TensorFlow は Python ベースの機械学習フレームワークです。 Coursera でロ...

DeepFakeの頭部置換技術がアップグレード:浙江大学の新モデル、GANが美しい髪の頭部を生成

DeepFake は顔を本物らしく入れ替えることができますが、髪の毛の場合は同じことはできません。現...

PyTorch 1.12 がリリース、Apple M1 チップ GPU アクセラレーションを正式にサポート、多くのバグを修正

​PyTorch 1.12 が正式にリリースされました。まだアップデートしていない方は今すぐアップ...

機械学習情報工場になるためには、企業はリーン製造からこれらの6つの基本を学ぶ必要がある

【51CTO.com クイック翻訳】調査機関Forrester Researchが最近発表した調査レ...

GPT-5 プレビュー!アレン人工知能研究所がGPT-5の新機能を予測する最も強力なマルチモーダルモデルを発表

GPT-5 はいつ登場し、どのような機能を持つのでしょうか?アレンAI研究所の新しいモデルがその答え...

スタンフォード大学の非接触型デバイスは、アクチュエータをスリーブに「縫い付ける」ことで、タッチ情報を遠隔で送信できる。

世界的なパンデミックは2年近く続いており、リモートワークで何日も過ごし、他の人との物理的な接触を切望...

...

世界トップ10のAIトレーニングチップの包括的なレビュー

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

企業はどのように AI を活用してビジネスの成長を促進できるのでしょうか?

人工知能 (AI) の導入によって得られる潜在的な利益を考えると、企業は傍観者でいるわけにはいきませ...

...

AI に携わる人が Python を選ぶ理由は何でしょうか?

AIとビッグデータの時代に、最初の開発言語となるのは誰でしょうか?これは議論の余地のない質問です。...

警告! 「リップリーディング」キーでデータを盗む、AIは本当に怖い

コンピューターに頼って悪者を即座に見つけることができれば素晴らしいのですが、問題は AI システムが...