クラウド管理と運用にAIを適用する方法

クラウド管理と運用にAIを適用する方法

AI は、クラウドの管理と運用に大変革をもたらすものとして台頭しています。しかし、AI とクラウド コンピューティングに関しては、すぐに満足できる結果は得られません。企業は、この新しいテクノロジーの誇大宣伝を打ち破り、真のメリットを得るための戦略を策定する必要があります。

AI を導入してクラウド管理の実践を改善することに関心がある場合は、次の 4 つのフェーズを詳しく確認してください。

  • 評価を実施する
  • 目標と主要業績評価指標を定義する
  • 適切なサービスとツールの選択
  • プロセスの監視と改善

フェーズ1. 評価を実行する

まず、チームが解決しようとしている課題を評価します。 AI がこれらの問題の克服に役立つかどうか、そして今が既存のプロセスを強化するか、それとも完全に置き換える時期であるかどうかを判断する必要があります。

スケーラビリティ、信頼性、パフォーマンスを考慮した上で、現在のインフラストラクチャが AI サービスとアプリケーションに対する高まる需要に対応できるかどうかについて、十分な情報に基づいた判断を下してください。また、データ管理プラクティスも見直して、AI テクノロジーをクラウド インフラストラクチャにシームレスに統合する必要があります。これらのプラクティスには、次のものが含まれます。

  • データのバックアップ
  • 災害復旧
  • データ暗号化

さらに、データ ガバナンス フレームワークの現在の状態 (データ プライバシー ポリシーと手順を含む) を確認して、拡張された詳細な評価により、適切なコンプライアンス標準に従ってビジネスと顧客の情報を保護します。

フェーズ2. 目標と主要業績評価指標を定義する

AI イニシアチブには、成功を定義するための明確な目標と測定可能な指標が必要です。新しい AI ツールとプラクティスが効果的に機能していることを証明する 1 つの方法は、KPI を測定することです。クラウド管理の一般的な KPI は、システム パフォーマンス、セキュリティ、コストの最適化に重点を置いています。現在のアプローチから得られる速度、スケーラビリティ、信頼性に関する既存のデータを必ず確認してください。

クラウド管理に AI を活用すると、より多くのデータと洞察が得られ、効率性と有効性が向上します。さらに、AI の予測機能により、将来のクラウドのニーズを予測し、それに応じてリソースを調整できるようになります。

コスト最適化は、クラウド支出の削減に役立つ AI の使用例が増えています。AI はクラウドの使用パターンを予測し、リソースの割り当てを自動化することで無駄を排除し、組織がクラウド支出を最大限に活用できるようにします。

フェーズ3. 適切なサービスとツールを選択する

特にチームが AI 対応のクラウド管理ツールやコスト最適化ツールにアップグレードする場合は、ツールの選択を軽視してはなりません。パイロット プロジェクトや概念実証を実施してツールが要件を満たしていることを確認し、クラウド関連データを使用する必要がある可能性のあるビジネス関係者を関与させて、AI がデータとレポート要件を確実に提供できるようにします。

クラウド管理の一部としての AI は、自動化を通じてよりきめ細かい制御とデータ集約を実現できるため、クラウド管理プラットフォームを超えて他のバックエンド システムとの統合の機会が増えます。展開とクラウド統合の問題を軽減するには、サードパーティの AI ツールをクラウド管理スタック内に実装するか、クラウド プロバイダーの AI サービスとして実装するかによって異なります。今日のサードパーティのクラウド管理ツールのほとんどは、ハイブリッドおよびマルチクラウド環境で動作します。

クラウド チームは、実装のメリットと潜在的な課題、AI 対応のクラウド管理プラットフォームが仕事にどのような変化をもたらすかを理解する必要があります。たとえば、CAST AI、ProperOps、または同様のコスト最適化ツールを実装する場合、チームは利用可能な追加のレポート オプションを理解する必要があります。レポート作成に AI を最大限に活用できるようにユーザーをトレーニングするのにも時間がかかります。

フェーズ4. プロセスの監視と改善

クラウド管理業務に AI を導入しても、監視、継続的な改善、改良にかかる時間は節約されません。バックエンド データへのアクセスが増加すると、ビジネスで AI を最大限に活用するには、より多くの作業が必要になります。

AI はクラウド リソースからの大量のデータを分析できるため、クラウド チームの監視オプションを増やすことができます。分析の向上により、異常検出が向上し、予測分析が可能になります。プロジェクト計画に時間を考慮して、チームがクラウド管理の実践、特にレポートとアラートを改善できるようにします。

<<: 

>>: 

ブログ    
ブログ    

推薦する

物流と輸送における人工知能の将来的な役割

大手物流組織はすでに配送に人工知能 (AI) を活用しています。現在、多くの企業がこのデータを収集し...

2024年のクラウドとAIのトレンド

新しいテクノロジー時代の幕開けを迎えた今、クラウド コンピューティングと人工知能 (AI) の融合に...

...

ビジネスリーダーが AI プロジェクトの失敗を回避する 3 つの方法

なぜこれほど多くの AI プロジェクトが失敗するのでしょうか。そして、ビジネス リーダーはどうすれば...

GPT-4 は AGI のきっかけとなるだけでしょうか? LLMは最終的に廃止され、世界モデルが未来となる

人間の認知においては、汎用人工知能(AGI)を人工知能の究極の形、およびその開発の究極の目標として設...

AIツールはリモートワーク中のチームの生産性向上に役立ちます

[[385429]]人工知能は、自宅からリモートで仕事をしながら生産性を維持したい労働者にとって重要...

OpenAIの取締役会が数秒で後悔!ウルトラマン、CEOに復帰要請

たった1日で、OpenAIの取締役会は劇的に変化しました。最新のニュースによると、ウルトラマンがCE...

研究によると、話題が真実か虚偽かに関係なく、AIが書いたマイクロブログは実際の人間よりも説得力があるという。

6月29日、最新の研究により、人工知能によって生成されたツイートは実際の人間が書いたものよりも説得...

ディープフェイクに取って代わると期待されていますか?今年最も注目されているNeRFテクノロジーの秘密を解き明かす

え、まだNeRFを知らないの? NeRF は、今年コンピューター ビジョン分野で最も注目されている ...

GPT-2からGPT-4まで、大規模言語モデルの革新を探る

翻訳者 |陳俊レビュー | Chonglou最近では、大規模言語モデル ( LLM )を使用して、書...

AI+ビデオ分析: ユビキタスセキュリティリスクのリアルタイム監視

[[352986]] 2020 年の多くの運用上の課題を踏まえて、公益事業会社は、運用する物理的およ...

信頼できる GNN を構築するにはどうすればよいでしょうか?最新のレビューはコチラ!信頼できるグラフニューラルネットワーク: 次元、方法、傾向

序文ここ数年、ニューラルネットワークを中心とした人工知能技術は、さまざまな種類のデータを深く掘り下げ...

ナレッジグラフの過去と現在: ナレッジグラフがなぜ人気なのか?

[51CTO.com からのオリジナル記事] 近年、ナレッジグラフは、その強力な表現力、優れたスケ...

1つのGPUで数千の環境と800万ステップのシミュレーションをわずか3秒で実行。スタンフォード大学が強力なゲームエンジンを開発

この段階では、AI エージェントは万能であるように見え、ゲームをプレイしたり、人間を模倣してさまざま...