クラウド管理と運用にAIを適用する方法

クラウド管理と運用にAIを適用する方法

AI は、クラウドの管理と運用に大変革をもたらすものとして台頭しています。しかし、AI とクラウド コンピューティングに関しては、すぐに満足できる結果は得られません。企業は、この新しいテクノロジーの誇大宣伝を打ち破り、真のメリットを得るための戦略を策定する必要があります。

AI を導入してクラウド管理の実践を改善することに関心がある場合は、次の 4 つのフェーズを詳しく確認してください。

  • 評価を実施する
  • 目標と主要業績評価指標を定義する
  • 適切なサービスとツールの選択
  • プロセスの監視と改善

フェーズ1. 評価を実行する

まず、チームが解決しようとしている課題を評価します。 AI がこれらの問題の克服に役立つかどうか、そして今が既存のプロセスを強化するか、それとも完全に置き換える時期であるかどうかを判断する必要があります。

スケーラビリティ、信頼性、パフォーマンスを考慮した上で、現在のインフラストラクチャが AI サービスとアプリケーションに対する高まる需要に対応できるかどうかについて、十分な情報に基づいた判断を下してください。また、データ管理プラクティスも見直して、AI テクノロジーをクラウド インフラストラクチャにシームレスに統合する必要があります。これらのプラクティスには、次のものが含まれます。

  • データのバックアップ
  • 災害復旧
  • データ暗号化

さらに、データ ガバナンス フレームワークの現在の状態 (データ プライバシー ポリシーと手順を含む) を確認して、拡張された詳細な評価により、適切なコンプライアンス標準に従ってビジネスと顧客の情報を保護します。

フェーズ2. 目標と主要業績評価指標を定義する

AI イニシアチブには、成功を定義するための明確な目標と測定可能な指標が必要です。新しい AI ツールとプラクティスが効果的に機能していることを証明する 1 つの方法は、KPI を測定することです。クラウド管理の一般的な KPI は、システム パフォーマンス、セキュリティ、コストの最適化に重点を置いています。現在のアプローチから得られる速度、スケーラビリティ、信頼性に関する既存のデータを必ず確認してください。

クラウド管理に AI を活用すると、より多くのデータと洞察が得られ、効率性と有効性が向上します。さらに、AI の予測機能により、将来のクラウドのニーズを予測し、それに応じてリソースを調整できるようになります。

コスト最適化は、クラウド支出の削減に役立つ AI の使用例が増えています。AI はクラウドの使用パターンを予測し、リソースの割り当てを自動化することで無駄を排除し、組織がクラウド支出を最大限に活用できるようにします。

フェーズ3. 適切なサービスとツールを選択する

特にチームが AI 対応のクラウド管理ツールやコスト最適化ツールにアップグレードする場合は、ツールの選択を軽視してはなりません。パイロット プロジェクトや概念実証を実施してツールが要件を満たしていることを確認し、クラウド関連データを使用する必要がある可能性のあるビジネス関係者を関与させて、AI がデータとレポート要件を確実に提供できるようにします。

クラウド管理の一部としての AI は、自動化を通じてよりきめ細かい制御とデータ集約を実現できるため、クラウド管理プラットフォームを超えて他のバックエンド システムとの統合の機会が増えます。展開とクラウド統合の問題を軽減するには、サードパーティの AI ツールをクラウド管理スタック内に実装するか、クラウド プロバイダーの AI サービスとして実装するかによって異なります。今日のサードパーティのクラウド管理ツールのほとんどは、ハイブリッドおよびマルチクラウド環境で動作します。

クラウド チームは、実装のメリットと潜在的な課題、AI 対応のクラウド管理プラットフォームが仕事にどのような変化をもたらすかを理解する必要があります。たとえば、CAST AI、ProperOps、または同様のコスト最適化ツールを実装する場合、チームは利用可能な追加のレポート オプションを理解する必要があります。レポート作成に AI を最大限に活用できるようにユーザーをトレーニングするのにも時間がかかります。

フェーズ4. プロセスの監視と改善

クラウド管理業務に AI を導入しても、監視、継続的な改善、改良にかかる時間は節約されません。バックエンド データへのアクセスが増加すると、ビジネスで AI を最大限に活用するには、より多くの作業が必要になります。

AI はクラウド リソースからの大量のデータを分析できるため、クラウド チームの監視オプションを増やすことができます。分析の向上により、異常検出が向上し、予測分析が可能になります。プロジェクト計画に時間を考慮して、チームがクラウド管理の実践、特にレポートとアラートを改善できるようにします。

<<: 

>>: 

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

AI 開発企業向けのトップ機械学習フレームワーク (2020 年版)

[[283218]] [51CTO.com クイック翻訳] 実際、人工知能技術は私たちの生活を日々...

速報、AI専門家のJing Kun氏がBaiduを退社! CIOの李英がXiaoduのCEOに就任

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

ソフトウェアとハ​​ードウェアを組み合わせたCDS Shouyun AIクラウドサービスの技術実践

人工知能は新たな変化を先導しています。近年、人工知能はテクノロジー業界から始まり、急速に生活の各分野...

Transformerのランクを下げ、LLMのパフォーマンスを低下させることなく、特定のレイヤーのコンポーネントの90%以上を削除する

大規模モデルの時代において、Transformer は科学研究分野全体を一手にサポートします。 Tr...

研究者たちは建設における人工知能の利用を研究している

過去数十年にわたり、AI ツールは、コンピューター サイエンスから製造、医学、物理学、生物学、さらに...

感動して泣きました。ロボットはついに自分で服をたたむことを覚えました。

人間の子どもの最も基本的な運動知能、例えばつかむ、持ち上げる、あるいはキルトや衣服をたたむといった家...

AI、ブロックチェーン、ビッグデータなど最先端の技術動向を明らかにする新刊書籍「風向」が発売

2018年12月8日、中国国家管弦楽団コンサートホールで、中国工業情報化出版メディアグループが主催し...

オタクのためのオープンソースドローンプロジェクト4つ

[[178638]] [51CTO.com クイック翻訳]過去数年間で、民間および商用ドローンへの関...

画像も感情を伝えることができるのでしょうか?ロチェスター大学のチームが新しいコンピュータービジョンのタスクを提案

画像スタイルの転送?声の感情移入?いいえ、それはイメージの感情的な伝達です。コンピュータビジョンの分...

ドローン空気検知器は環境保護にどのように役立つのでしょうか?

大気汚染は常に国家経済と国民の健康を悩ませる重要な要因となっている。大気中の汚染物質をタイムリーかつ...

自動運転における機械学習アルゴリズムの理解

機械学習アルゴリズムは、自動運転のさまざまなソリューションで広く使用されています。電子制御ユニットで...

AIのダークサイドを暴く:人工知能は人間に取って代わるが、機械をどのように学習するかは分からない

[[189044]]昨年、自動運転車がニュージャージー州モンマス郡に侵入した。チップメーカーのNvi...

アルゴリズム | ダブルポインタはリンクリストを破る優れた魔法の武器です

今は少し理解できました。面接の過程で、面接官が私たちにコードを手書きで書くように頼むことがあります。...

Google、写真を撮るだけで皮膚疾患を検出するAIツールの新機能を発表

5月19日、Googleの開発者会議I/O 2021が開幕した。完全オンライン形式を採用し、Goog...