画像やテキストが無限の3D世界を生み出します!スタンフォード大学の呉嘉軍氏のチームの新しい研究は、ネットユーザーから「信じられない」と評された。

画像やテキストが無限の3D世界を生み出します!スタンフォード大学の呉嘉軍氏のチームの新しい研究は、ネットユーザーから「信じられない」と評された。

スタンフォード大学の呉嘉軍チームが『不思議の国のアリス』の傑作のAI版を制作!

たった 1 つの画像または 1 段落のテキストを使用して、カメラの軌跡に沿って無限に一貫した 3D シーンを生成できます。

古代の詩を入力するだけで、詩の中の場面がすぐに表示されます。

そして、それは行ったり来たりできるタイプで、また戻ることができるタイプです。

同じ開始点から異なるシーンに入ることができます。

リアルなシーンもOK、キャラクターの影などのディテールも違和感なし:

ブロックワールドはさらに簡単にプレイでき、まるで「Minecraft」を開いたような感じです。

この作品は「WonderJourney」と呼ばれ、スタンフォード大学の Wu Jiajun 氏のチームと Google Research が共同で制作しました。

WonderJourney は、あらゆる場所から多様で一貫性のある 3D シーンを無限に生成できるだけでなく、テキストの説明に基づいて生成する場合にも高度な制御が可能です。

マウスをビデオの上に置くだけで、自動スライドが一時停止します。

この作品の公開にネットユーザーからは「信じられない」という声が上がった。プロジェクトコードはまだ正式にリリースされていませんが、200 を超えるスターを獲得しています。

AI研究者のザンダー・スティーンブルッゲ氏は驚いてこう語った。

これは、生成 AI と従来の 3D テクノロジーの完璧な組み合わせです。

これまでの作品は、一つのシナリオに特化していたのですが、『WonderJourney』は新たな世界への扉を開いたとも言えます。

それで、これはどのように行われるのでしょうか?

素晴らしい3Dの旅を始めましょう

無限に一貫性のある 3D シーンを生成する際の大きな課題の 1 つは、要素の多様性を維持しながら、シーン要素の論理的な組み合わせを生成する方法です。

これには、生成される要素の空間位置の合理性を判断すること、および新しいシーンと古いシーン間の遮蔽関係、視差、その他の幾何学的関係を処理することが必要です。

WonderJourney はこの点に関して非常に細心の注意を払っていることがわかります。

どんなスタイルでも簡単にコントロールできます:

これを実現するための鍵となるのは、WonderJourney のモジュール式プロセスです。

全体的な生成プロセスは、「生成するオブジェクトを決定する」、「これらのオブジェクトをどこに配置するか」、「これらのシーンを幾何学的にどのように接続するか」という 3 つのステップに分かれています。

次の 3 つのモジュールを完了する必要があります。

  • シーンの説明の生成: 大規模言語モデル(LLM)を使用して、現在のシーンに基づいて次のシーンのテキストの説明を生成します。
  • ビジュアルシーン生成: テキストによる説明をシーンの 3D ポイント クラウド表現に変換します。
  • 視覚的な検証: VLM を使用して生成されたシーンを検証し、不合理な結果が検出された場合に再生成を開始します。

具体的には、シーン記述生成モジュールでは、事前トレーニング済みの LLM を使用して現在のシーン記述を入力し、自己回帰を通じて次のシーンを生成します。次のシーンには、スタイル、オブジェクト、背景の 3 つの部分の説明が含まれます。

さらに、自然言語記述は単語クラスによってフィルタリングされ、名詞と形容詞のみが保持されます。新しいシーン記述が生成されるたびに、シーン記述メモリが更新されます。

ビジュアルシーン生成モジュールでは、まず現在の画像/テキストが 3D ポイント クラウド表現に変換されます。

次に、深度調整を使用して、オブジェクト境界の深度の不連続性を強調します。簡単に言えば、境界の両側の深度のコントラストがより明確になり、遷移がよりリアルになります。

次に、テキストガイドによる修復を使用して、テキストの説明に基づいて新しいシーン画像を生成します。

研究者らはまた、深度一貫性の損失と再レンダリング一貫性のメカニズムを設計し、新しいシーンと古いシーン間のオクルージョンとポイントクラウドの配置を改善しました。

最後に、ビジュアル検証モジュールは VLM キューを使用して、フレーム、ぼかしなど、生成されたイメージ内の不良結果を検出し、検出された場合はシーンを再生成します。

これら 3 つのモジュールは実装可能であり、最も高度な事前トレーニング済みモデルに置き換えることができるため、トレーニングは不要であることは注目に値します。

実験的テスト

コヒーレント 3D シーン生成は既存の利用可能なデータセットがない新しいタスクであるため、研究者は自分で撮影した写真、オンライン上の著作権フリーの写真、および生成された画像を使用して実験を評価しました。

さらに、画像ベースの InfiniteNature-Zero とテキストベースの SceneScape という 2 つの最先端の連続ビュー生成方法がベースラインとして使用されます。

定性的な結果は、異なるタイプの入力から一貫した 3D シーン シーケンスを生成することの有効性を示しており、この方法では任意の入力から 3D シーンを生成できることを実証しています。

さらに、同じ入力から異なる出力が生成されるため、アプローチの多様性が実証されます。

研究者らはまた、生成効果の多様性、視覚品質、シーンの複雑さ、面白さという4つの側面で人間の嗜好評価を行った。

結果は、WonderJourney メソッドが InfiniteNature-Zero および SceneScape よりも大幅に優れていることを示しています。

著者について

この論文はスタンフォード大学とGoogle ResearchのWu Jiajun氏のチームによるものである。

論文の第一著者はスタンフォード大学博士課程4年生のYu Hongxing氏であり、指導教員はWu Jiajun氏である。

彼の主な研究分野は、物理的なシーンの理解と動的モデリングです。

Yu Hongxing はかつて Google Research でインターンをしており、その期間中に論文の一部を完成させました。

Jiajun Wu は現在、スタンフォード大学の助教授であり、スタンフォード視覚学習研究所 (SVL) およびスタンフォード人工知能研究所 (SAIL) に所属しています。

彼はMITで博士号を取得し、清華大学の姚クラスを卒業して学士号を取得した。かつては「清華大学の10人の偉大な学者の一人」と称えられた。

論文リンク: https://arxiv.org/abs/2312.03884

<<: 

>>: 

ブログ    

推薦する

ガートナーの調査結果: CEO は AI を業界に最も大きな影響を与える破壊的技術と見なしている

「ジェネレーティブ AI はビジネスや運用モデルに多大な影響を及ぼすでしょう」と、ガートナーの著名な...

Google が Mirasol をリリース: 30 億のパラメータで、マルチモーダル理解を長時間動画にまで拡張

11月16日、Googleは、動画に関する質問に答えたり、新たな記録を樹立したりできる小型人工知能モ...

アルゴリズムを使って従業員を解雇する人工知能は、労働者の新たなリーダーになったのだろうか?

最近、外国メディアのゲームワールドオブザーバーは、ロシアのオンライン決済サービス企業エクソラがアルゴ...

銀行における会話型 AI – 企業が犯しがちな 3 つの間違い

金融サービス業界は、特定の金融プロセスに不可欠なレガシー機器やシステムを使用しているため、他の業界に...

人工知能:未来への道を切り開く

[51CTO.com クイック翻訳]デジタル経済が世界を席巻する中、人工知能は今日私たちが知っている...

...

...

ニューヨーク州が顔認識を「禁止」する法律を制定。なぜキャンパス内で AI が頻繁に「失敗」するのか?

アメリカは顔認識技術と全面的に戦っている。米ニューヨーク州は最近、2022年まで学校での顔認識やその...

生成型AIとデータが未来の産業をどう形作るか

私たちは、生成型 AI の出現によって推進される技術革命の真っ只中にいます。 これは単なる技術の漸進...

2019 年の機械学習フレームワークの戦い: Tensorflow との競争は熾烈、進化する PyTorch はどこで勝利するのか?

[[278853]]ビッグデータダイジェスト制作出典: thegradient翻訳者: 張大毓如、...

交換されますか? GPT4コードインタープリター完全自動

こんにちは、みんな。今日は、GPT-4 コード インタープリターがデータ分析、科学研究の描画、機械学...

スマートコミュニティはどれくらい「スマート」なのでしょうか?知能の背後にある技術的応用を解釈する

モノのインターネット技術の発展と普及に伴い、WIFi、GPRS、LoRaWANなどの通信プロトコルが...

インテリジェント時代の到来により、インテリジェントロボットが私たちの仕事と収入を奪ってしまうのでしょうか?

インテリジェント社会の到来とともに、インテリジェントロボットは私たちの生活や仕事にますます多く登場す...