2頭のアルパカが頭と尻尾を切り落とし、それをくっつけてハギングフェイスリストのトップに

2頭のアルパカが頭と尻尾を切り落とし、それをくっつけてハギングフェイスリストのトップに

HuggingFace が再びオープンソースの大規模モデルのリストのトップに躍り出ました。

最前列は、数週間前に展示されていたさまざまな Mixtral 8x7B の微調整バージョンを除けば、すべてSOLAR 10.7B の微調整バージョンで埋め尽くされています。

SOLAR大型モデルの由来は何ですか?

関連論文が ArXiv にアップロードされました。これは韓国のUpstage AI社によるもので、新しい大規模モデル拡張法である深度アップスケーリング(DUS)を使用しています。

簡単に言うと、 7Bアルパカ2頭の頭と尻尾を切り落とし、片方の最初の8層を切り落とし、もう片方の最後の8層を切り落とします。

残りの2つの24層モデルを縫い合わせ、最初のモデルの24層目と2番目のモデルの9層目を接合して、最終的に新しい48層10.7Bの大型モデルを形成します。

この論文では、新しいアプローチは MoE などの従来のスケーリング方法よりも優れており、基盤となる大規模モデルとまったく同じインフラストラクチャで使用できると主張しています。

ゲーティングネットワークやMoEに最適化されたトレーニングフレームワークなどの追加モジュールは必要なく、高速推論のためのカスタムCUDAカーネルも不要です。高い効率性を維持しながら、既存の方法にシームレスに統合できます。

チームは7Bスケール最強の単体大型モデルであるミストラル7Bをベース素材に選び、オリジナル版やMoE版を上回る新たな手法でつなぎ合わせました。

同時に、調整されたInstructバージョンも、対応するMoE Instructバージョンを上回ります。

最後まで縫合する

この論文では、直感に基づいてこのスプライシング方法が使用される理由を説明しています。

まず、最も単純な拡張方法、つまり 32 層の基本的な大規模モデルを 2 回繰り返して 64 層にします。

これの利点は、異質性がなく、すべてのレイヤーがベースの大きなモデルから取得されるが、レイヤー 32 と 33 の間の継ぎ目にはより大きな「レイヤー距離」があることです(これはレイヤー 1 と同じです)

これまでの研究では、Transformer の異なるレイヤーはそれぞれ異なる機能を果たし、たとえば、より深いレイヤーはより抽象的な概念の処理に優れていることが示されています。

研究チームは、層の距離が大きすぎると、事前にトレーニングされた重みを効果的に活用するモデルの能力が妨げられる可能性があると考えています。

1 つの解決策として、中間層を犠牲にして継ぎ目の差を減らすことが考えられ、ここから DUS 方式が生まれました。

パフォーマンスとモデル サイズのトレードオフに基づいて、チームは各モデルから 8 つのレイヤーを削除することを選択し、シームは 1 番目のレイヤーに接続された 32 レイヤーから 9 番目のレイヤーに接続された 24 レイヤーに変更されました。

単純につなぎ合わせたモデルのパフォーマンスは、最初は元の基本モデルよりも低くなりますが、事前トレーニングを継続することですぐに回復できます。

命令の微調整フェーズでは、オープンソース データセットの使用に加えて、数学的に強化されたデータセットも作成され、アライメント フェーズでは DPO が使用されました。

最後のステップは、異なるデータ セットでトレーニングされたモデル バージョンを加重平均して、ステッチを完了することです。

一部のネットユーザーはテストデータの漏洩の可能性を疑問視した。

研究チームはこの点も考慮し、論文の付録でデータ汚染テストの結果を具体的に報告し、その結果は低いレベルを示しました。

最後に、SOLAR 10.7B ベース モデルと微調整されたモデルは両方とも、Apache 2.0 プロトコルに基づくオープン ソースです。

これを試したネットユーザーからは、JSON 形式のデータからデータを抽出するパフォーマンスが優れているとの報告がありました。

論文アドレス: https://arxiv.org/abs/2312.15166

<<: 

>>: 

推薦する

劉玉樹:人工知能における中国と米国の格差は縮まっているが、まだやるべきことはある

著者の劉玉樹氏は中国人民大学重陽金融研究所学務委員会委員、マクロ研究部部長、研究者である。本稿は11...

プログラマーが知っておくべき10の基本的な実用的なアルゴリズムとその説明

アルゴリズム1: クイックソートアルゴリズムクイックソートは、Tony Hall によって開発された...

李菲菲の「具現化された知能」はどこまで進歩したのか?

2009年、当時プリンストン大学に勤務していたコンピューター科学者のフェイフェイ・リー氏が、人工知...

校内暴力を予防し解決するために、AIは子どもたちのために何ができるでしょうか?

[[228688]]あなたはキャンパスライフに満足していますか?多くの人が「はい」と答えると思いま...

人工知能教育とは何ですか?将来の教育の顕著な特徴は何でしょうか?

グローバル情報化教育の時代において、教育モデル、教育内容、学習方法は大きな変化を遂げており、人工知能...

AI4Science はまだ誤った提案なのでしょうか? 2年後、ワークショップ主催者はAI4Scienceを再検討する

2021年、情熱的な若者のグループが、AI4Science(AI for Science)を機械学習...

2018年のAIトレンドはこちら

ビッグデータの計算分析は決して時代遅れではありません。それどころか、データ量が増え続けるにつれて、デ...

10億パラメータモデルが携帯電話に登場!飛行モードでも画像を生成するのにわずか15秒しかかかりません

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

AIが従業員のオンボーディングを自動化する5つの方法

ますます激化する労働市場で人材獲得競争に勝つための新たな可能性を模索するビジネスリーダーや人事マネー...

独立サイトへのアクセス数が10万を超えました。YidiantianxiaのKreadoAIのサポートにより、海外のウィッグ市場でこのように活躍できることがわかりました。

近年、ウィッグ業界は海外進出のホットな分野として、国際市場で急速に台頭してきました。 Statist...

...

...

ロボットとIoTがサプライチェーンに与える影響

過去1年ほど、COVID-19パンデミックの影響により、効率的なサプライチェーンの重要性が特に顕著に...

...