PyTorch 1.0 プレビューがリリースされました: Facebook の最新のオープンソース AI フレームワーク

PyTorch 1.0 プレビューがリリースされました: Facebook の最新のオープンソース AI フレームワーク

Facebook は、人工知能プロジェクトで独自のオープンソース AI フレームワーク PyTorch を広く使用しており、最近、PyTorch 1.0 のプレビュー バージョンをリリースしました。

まだご存じない方のために説明すると、PyTorch は Python をベースにした科学計算ライブラリです。

PyTorch は、GPU の強力な計算能力を使用して、複雑なテンソル計算とディープ ニューラル ネットワークを実装します。 そのため、世界中の研究者や開発者に広く使用されています。

この新しい製品版プレビューは、2018 年 10 月 2 日火曜日にサンフランシスコの The Midway で開催された PyTorch 開発者カンファレンスで発表されました。

PyTorch 1.0 リリース候補のハイライト

リリース候補版の主な新機能には次のようなものがあります。

1. ジット

JIT は、研究と生産をより密接に結びつけるコンパイル ツールセットです。 Python をベースにした Torch Script と呼ばれるスクリプト言語が含まれており、既存のコードと互換性を持たせる方法も備えています。

2. 新しい torch.distributed ライブラリ: “C10D”

「C10D」は、異なるバックエンドでの非同期操作を可能にし、低速ネットワークでのパフォーマンスを向上させます。

3. C++ フロントエンド (実験的な機能)

これは不安定な API (おそらくプレリリース) として具体的に言及されていますが、確立された Python フロントエンドの API とアーキテクチャに従う PyTorch バックエンドへの純粋な C++ インターフェイスであり、ハードウェア上で直接、高性能で低レイテンシの C++ アプリケーションの研究開発を可能にします。

詳細については、GitHub で完全な更新ノートを確認してください。

PyTorch 1.0 の最初の安定バージョンは夏にリリースされる予定です。 (LCTT翻訳注:この情報は間違っている可能性があります)

Linux に PyTorch をインストールする

PyTorch v1.0rc0 をインストールするには、開発者は conda の使用を推奨していますが、ローカル インストール ページに示されているように、他の方法も利用できます。必要な詳細はすべてドキュメントに記載されています。

前提

  • リナックス
  • ピップ
  • パイソン
  • CUDA (Nvidia GPU 搭載ユーザー向け)

Pip のインストール方法と使用方法がわかったので、次は Pip を使用して PyTorch をインストールする方法を学びましょう。

PyTorch には GPU と CPU のみに異なるインストール パッケージがあることに注意してください。ハードウェアに適したパッケージをインストールする必要があります。

PyTorchの古いバージョンと安定バージョンをインストールする

GPU マシンに安定バージョン (0.4) をインストールする場合は、次を使用します。

  1. pip install torch torchvision

CPU のみの安定バージョンをインストールするには、次の 2 つのコマンドを使用します。

  1. pip install http : //download.pytorch.org/whl/cpu/torch-0.4.1-cp27-cp27mu-linux_x86_64.whl
  2. pip install torchvision

PyTorch 1.0 リリース候補をインストールする

次のコマンドを使用して、PyTorch 1.0 RC GPU バージョンをインストールします。

  1. pip install torch_nightly - f https : //download.pytorch.org/whl/nightly/cu92/torch_nightly.html

GPU がなく、CPU のみのバージョンを使用する場合は、次のコマンドを使用します。

  1. pip install torch_nightly - f https : //download.pytorch.org/whl/nightly/cpu/torch_nightly.html

PyTorchのインストールを確認する

次のような簡単なコマンドを使用して、ターミナルで Python コンソールを起動します。

  1. python

次に、次のサンプル コードを 1 行ずつ入力して、インストールを確認します。

  1. from __future__ import print_function
  2. import torch
  3. x = torch . rand ( 5 , 3 )
  4. print ( x )

次のような出力が得られるはずです:

  1. tensor ([[ 0.3380 , 0.3845 , 0.3217 ],
  2. [ 0.8337 , 0.9050 , 0.2650 ],
  3. [ 0.2979 , 0.7141 , 0.9069 ],
  4. [ 0.1449 , 0.1132 , 0.1375 ],
  5. [ 0.4675 , 0.3947 , 0.1426 ]])

PyTorch の GPU 機能を使用できるかどうかを確認するには、次のサンプル コードを使用できます。

  1. import torch
  2. torch . cuda . is_available ()

出力は次のようになります。

  1. True

PyTorch の AMD GPU のサポートはまだ開発中であるため、完全なテスト範囲はまだ報告されていません。AMD GPU をお持ちの場合は、ここで提案してください。

それでは、PyTorch が広く使用されている研究プロジェクトをいくつか見てみましょう。

PyTorch に基づく進行中の研究プロジェクト

  • Detectron: オブジェクトをインテリジェントに検出して分類できる Facebook AI Research のソフトウェア システム。以前はCaffe2をベースにしていました。今年初め、Caffe2とPyTorchが協力して研究と生産のPyTorch 1.0を作成しました。
  • 教師なし感情発見:ソーシャルメディアで広く使われているアルゴリズム
  • vid2vid: リアルなビデオからビデオへの翻訳
  • DeepRecommender これらのシステムがどのように機能するかについては、Netflix AI に関する過去の記事で説明しました。

大手 GPU メーカーの Nvidia は、この分野における最近の開発状況に関する最新情報を提供しており、進行中の共同研究についても読むことができます。

PyTorch のこの機能にはどのように対処すればよいでしょうか?

Facebook がソーシャル メディア アルゴリズムにこのような驚くべき革新をどのように実装しているかを考えるとき、私たちは感謝すべきでしょうか、それとも恐怖すべきでしょうか?もうすぐSkynetです!PyTorchのこの新しく改良されたリリースは、間違いなく物事をさらに前進させるでしょう!以下にコメントして、お気軽にご意見をお聞かせください!

<<:  今後3年間で、人工知能は全国の小売業界に影響を与える大きな嵐となるでしょう。排除されてしまうのでしょうか?

>>:  AI+がん診断:巨人の「小さなそろばん」はまだ実現困難

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

AIはどのようにして責任を持つようになるのでしょうか?英国規格協会が答えを持っている

人工知能(AI)は、現在世界で最も革新的で影響力のある技術の1つであり、さまざまな分野や産業に浸透し...

百度CTO王海鋒氏:「文心易眼」のユーザー数は1億人を超える

「文心易眼のユーザー規模が1億人を突破した」。12月28日、百度の最高技術責任者で、深層学習技術・応...

...

Kaggle機械学習モデル融合(スタッキング)体験

[[205595]]この記事では、エントリーレベルのスタッキング アプリケーションを学習する私の精神...

人工知能 vs 人間の知能: 人間と機械の融合が未来か?

[[187064]]人工知能を研究するアメリカの企業カーネルの投資家ブライアン・ジョンソン氏は、埋...

ヘルスケアにおける自然言語処理 (NLP) の 8 つの例

翻訳者 | 夏東偉校正 | 梁哲、孫淑娟医療においては、データは患者の健康記録、医師の指示、処方箋か...

言語間、人間の声と犬の鳴き声の相互変換をサポートし、最も近いものだけを使用するシンプルな音声変換モデルはどれほど素晴らしいか

AIが関わる音声の世界はまさに魔法のようです。ある人の声を別の人の声に置き換えるだけでなく、動物と声...

Facebook は顔認識を中止することで本当にリスクを回避しているのでしょうか?人種差別は致命的である

名前にちなんでFacebookとしても知られるMateは、顔認識システムを無効化し、10億人以上の個...

...

...

AIチップのスタートアップ企業が実装の道を探り、開発が成熟

ここ数年、AIチップの新興企業が雨後の筍のように出現した。現在、初期の参加者グループは、優れたチップ...

最大400万のトークンコンテキストと22倍の推論速度を備えたStreamingLLMは人気を博し、GitHubで2.5Kのスターを獲得しました。

会話型 AI ロボットとのコミュニケーションを経験したことがあるなら、非常にイライラした瞬間を間違い...

あなたはまだこれらの仕事をしていますか?マシンビジョンと人工知能により、今後10年間で失業することになるかもしれません

[[216406]]新しい技術の出現は、それに関わる人々の仕事を常に変えていきます。メインフレームコ...

米メディア:人工知能(AI)は、人間の推論の欠点を伴わずにコンピューティングの利点を実現する

[[334808]]ミラロのコメント – 今日の軍事コンピューティングに関連するものはすべて人工知能...