BERTに続き、この新しいモデルは11のNLPベンチマークで再び記録を更新しました。

BERTに続き、この新しいモデルは11のNLPベンチマークで再び記録を更新しました。

BERT が 11 個の NLP 記録を破って以来、幅広いタスクに適用できる NLP 事前トレーニング済みモデルが大きな注目を集めています。最近、Microsoft はこれらの 11 の NLP タスクで BERT を上回る包括的なモデルを発表しました。現在、「Microsoft D36***I & MSR AI」というモデルには対応する論文やプロジェクトアドレスが提供されていないため、新しい事前トレーニング方法であるかどうかは不明です。

BERT と Microsoft の新しいモデルはどちらも、一般言語理解評価 (GLUE) ベンチマークの 11 のタスクを使用しており、GLUE を使用して、幅広い自然言語理解タスクにおけるモデルの堅牢性を実証したいと考えています。 GLUE ベンチマークでは特定のモデルに関する知識は必要ないため、原則として、文や文のペアを処理し、対応する予測を生成できるシステムであれば、評価に参加できます。これら 11 のベンチマーク タスクは、タスク全体にわたるモデルの機能、特にパラメータ共有や転移学習のパフォーマンスを測定することに重点を置いています。

GLUE ベンチマークにおける Microsoft の新しいモデルのパフォーマンスから判断すると、少なくとも 11 の NLP タスクで BERT-Large よりも効率的です。この高い効率は、81.9 という全体的なタスク スコアだけでなく、パラメータ効率にも反映されています。 Microsoft の新しいモデルには 1 億 1,000 万個のパラメーターしかありません。これは、BERT-Large モデルの 3 億 3,500 万個のパラメーターよりもはるかに少なく、BERT-Base と同じ数のパラメーターです。次の図は、GLUE ベンチマークの上位 5 つのモデルを示しています。

「Microsoft D36***I & MSR AI」モデルの説明ページでは、新しいモデルはマルチタスク共同学習を使用しています。したがって、すべてのタスクは同じ構造を共有し、マルチタスク トレーニング アプローチを通じて共同で学習されます。さらに、これら 11 のタスクは、文対分類 MNLI、QQP、QNLI、STS-B、MRPC、RTE、SWAG、単一文分類タスク SST-2、CoLA、質問応答タスク SQuAD v1.1、単一文注釈タスク (名前付きエンティティ認識) CoNLL-2003 NER の 4 つのカテゴリに分類できます。

このうち、文章ペア分類タスクでは、質問と回答のペアに正解が含まれているかどうかを判定するQNLIや、2つの文章がどの程度類似しているかを判定するSTS-Bなどがあり、いずれも文章間の関係性を処理するために使われています。単文分類タスクには、文の感情傾向を判断するSST-2タスクと文法の正しさを判断するCoLAタスクがあり、どちらも文の内部関係を扱います。

SQuAD v1.1 質問応答データセットでは、モデルは質問を通じて段落内の正解の位置と長さを取得します。 ***名前付きエンティティ認識データセット CoNLL では、各時間ステップで人物や場所などのラベルが何であるかを予測します。

以下は、さまざまなタスクにおける Microsoft の新しいモデルのスコアです。

現時点では、Microsoft の新しいモデルのパフォーマンスはまだ非常に限られています。マルチタスクの事前トレーニング後に BERT などのより広範な NLP タスクに使用できれば、このような効率的なモデルには間違いなく大きな利点があります。

<<:  在庫 | 今年の世界の AI 事情

>>:  Facebookは、さまざまな機械学習の問題に適用できる、勾配フリー最適化のためのオープンソースツール「Nevergrad」をリリースしました。

ブログ    

推薦する

マイクロソフトの新しい画像キャプションAIは、Word、Outlook、その他のソフトウェアのアクセシビリティ向上に役立ちます。

Microsoft は、特定の限定されたテストにおいて人間の精度を上回る新しい画像キャプション作成...

TensorFlow が機械学習開発に使用できるのはなぜですか?

機械学習は複雑な分野ですが、データの取得、モデルのトレーニング、予測の提供、将来の結果の改善のプロセ...

ボストンダイナミクスのロボット犬と一緒に散歩に行きました! 「すごい」って言い続ける…(車横転シーン添付)

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

1 つの記事で 4 つの基本的なニューラル ネットワーク アーキテクチャを理解する

[[260546]]ニューラル ネットワークを使い始めたばかりのときは、ニューラル ネットワーク ア...

古代都市ポンペイを「ハイテク」な方法で訪れるにはどうすればいいでしょうか?

ビッグデータダイジェスト制作著者: カレブ西暦79年、ベスビオ山が噴火し、その麓にあったポンペイの街...

AI技術がピカソの隠された絵画の発見を助ける

[[429170]]最近、外国メディアの報道によると、有名になる前のパブロ・ピカソは、必ずしも画材を...

AIは役に立たないなんて誰が言ったのでしょうか?パンデミックの間、AIは人類のために多くのことを行ってきました...

[[314062]] 10日以上も経過したが、流行は収束の兆しを見せず、事態はますます深刻化してい...

音声アシスタント業界はどこへ向かうのでしょうか?

プログレス・パートナーズの創設者兼シニアマネージングディレクターのニック・マクシェーン氏は、「今後数...

AI、IoTセンサー、ハイブリッドクラウドによるインダストリー4.0の拡張

AI の成熟度が増すということは、あらゆる規模の組織が AI をより簡単に使用して、重大で複雑な問題...

プログラマーが知っておくべき10の基本的な実用的なアルゴリズムとその説明

アルゴリズム1: クイックソートアルゴリズムクイックソートは、Tony Hall によって開発された...

...

人工知能とモノのインターネットの動的な統合を探る(パート 3)

1. IoT AIによるパーソナライズされたインテリジェントなユーザーエクスペリエンスIoT の人...

...

インテリジェントな運用とメンテナンスからスマートな運用まで、Qingchuang Technologyは企業に探偵シャーロックの能力を提供します

[51CTO.com からのオリジナル記事] 運用保守作業は、初期の手動運用保守から自動化運用保守、...