セミナーで講演したイエローフィンのCEO、グレン・ラビー氏は、多くのアナリストが自動化や人工知能によって自分たちが置き換えられることを恐れているかもしれないが、データアナリストの役割はビジネスと必要とされるスキルの幅に大きな影響を与えるだろうと主張した。 Yellowfin は、企業がデータを理解できるように支援することを専門とする分析およびビジネス インテリジェンス ソフトウェア企業です。 Rabie はデータと、分析を通じてビジネス パフォーマンスを向上させることに熱心に取り組んでいます。 Yellowfin を設立する前は、ナショナル オーストラリア銀行でシニア e コマース コンサルタントやグローバル従業員セルフサービス マネージャーなど、さまざまな役職を歴任しました。ラビー氏はメルボルン大学で商学修士号を取得しています。 AI、自動化、データ ストーリーテリングを分析分野に導入すると、分析のエンド ユーザーだけでなく、現場で作業する人々にも直接的な影響が及ぶことになります。多くのアナリストは、自動化や人工知能によって自分たちの仕事が置き換えられるのではないかと懸念しているかもしれませんが、データ アナリストの役割はビジネスと必要とされるスキルの幅に大きな影響を与えるだろうと私は考えています。 従来、データ アナリストは、分析用のデータの準備、レポートやダッシュボードの作成、そしてこれらのタスクを使用してデータ内の意味のある変更を手動で検索するなどの日常的で反復的なタスクにかなりの時間を費やしてきました。従来の分析ツールやビジネス インテリジェンス ツールでは、アナリストはデータのあらゆる組み合わせや順列を調査することはできません。興味のあるものを見つけた場合、それが統計的に関連性があり、ビジネスにとって意味があるかどうかをどのように判断するのでしょうか? 自動データ検出を導入すると、これらの問題が解決されます。これにより、洞察の検索に費やす時間が短縮され、アナリストが発見した内容を解釈して価値を付加する時間が増えます。これには、アナリストがビジネスに精通し(データだけでなくビジネスを理解する)、調査結果をより効果的に伝えるためのリテラシー スキルを向上させたストーリーテラーになることが求められます。 今日、データアナリストの役割には、幅広いデータ管理および分析活動が含まれます。これには、データの取得、準備、クリーニング、モデリング、そしてレポートとダッシュボードを作成して意思決定をサポートするためのビジネス向けの分析のカスタマイズが含まれます。これらすべての活動の中で、ビジネスにとって真の価値があるのは、ビジネスに影響を与える重要な変更や傾向を特定し、その情報を解釈してビジネスにどのような影響が及ぶ可能性があるかを判断する活動です。 ビジネスアナリストが直面しているジレンマは、解釈が彼らが行う最も価値のある活動であるにもかかわらず、最も時間を費やす活動ではないということです。ほとんどのデータ アナリストは、実際のデータ分析に時間の 20% しか費やしておらず、データの検索、クリーニング、モデリングなど、ビジネス上のメリットがほとんどないタスクに時間の 80% を費やしています。これは非常に非効率で、ビジネスにあまり価値をもたらしません。 非効率的なのはデータの準備だけではありません。従来のデータ分析および視覚化ツールでは、データの検出に完全に手動のアプローチが必要です。ユーザーは多数のフィールドとフィルターから選択し、パターン、傾向、異常な変化を探すためにデータを細かく分析する必要があります。この手動プロセスは時間がかかり、特に今日のデータが豊富な世界では、人為的なエラーや偏見の影響を受けやすくなります。その結果、ビジネス データの重大な変更を特定することは偶然であり、確実なことではありません。これにより、意思決定に使用するデータを決定しようとしている企業にとってリスクが生じます。 人工知能と自動化は、このパラダイムを根本的に変える可能性を秘めています。分析やビジネス インテリジェンスに適用すると、多くの面倒で時間のかかるプロセスが機械によって完了されます。機械学習を使用してデータの分析、マッチング、クレンジングのプロセスを効率化するスマートなデータ準備により、アナリストが分析用のデータの準備に費やす時間が大幅に短縮されます。これを、データにさまざまな高度なアルゴリズムを適用できる AI 駆動型データ検出と組み合わせることで、データ探索の時間を短縮し、関連するビジネス洞察を明らかにすることができます。 しかし、これらの進歩は AI がデータ アナリストに取って代わることを意味するものではありません。 AI は自動化には最適ですが、根本的な限界があります。機械はシーンを理解できません。組織環境、外部市場要因、顧客動向などの複雑な観点からデータを文脈化できるのは人間だけです。たとえば、競合他社のマーケティング成長に関する逸話的な証拠に基づいて製品売上の下降傾向に意味を見出す能力は、AI が処理できる範囲をはるかに超えていますが、人間にとっては比較的簡単です。 この変化の結果、データ アナリストは、コンテキストの提供やデータの解釈など、機械ではできない作業に多くの時間を費やすことになります。データ アナリストは、主要なビジネス パートナー データ アナリストに昇進し、データ リテラシー スキルを使用して、ビジネスがデータを解釈し、見つかった洞察を文脈化し、そのデータを使用して説得力のあるストーリーを伝えることを支援します。その結果、企業のデータアナリストは、よりビジネスに精通し、スキルを磨く必要があります。 これは、反復的なデータアナリストの仕事がなくなることはないという意味ではありません。データの準備とダッシュボードの構築に主眼を置くデータ アナリストにとっては、その時代がもっと早く到来するでしょう。しかし、組織は、データの意味をより深く理解するためのスキルを持つ人々にさらに依存するようになります。データ アナリストは、仕事の日常的な側面を簡素化する AI 駆動型ツールに頼るようになり、データの解釈やストーリーテリングなどの価値の高い活動に多くの時間を費やせるようになります。その結果、ビジネスに有意義な分析を提供できるようになり、データに基づいたより優れた意思決定が可能になります。 |
<<: 中国の新世代人工知能レポートが発表:中国はAI論文数で世界一
>>: 企業で文明的な AI を推進するための 6 つのヒント
人工知能 (AI) は単なるテクノロジーの流行語ではありません。私たちの生活や仕事のやり方を急速に変...
【51CTO.com 速訳】機械学習アルゴリズム入門機械学習アルゴリズムの分野では、分類には通常次の...
[[353959]]現在、世界の主要国は人工知能産業の発展を非常に重視しています。我が国は、新世代の...
[51CTO.com からのオリジナル記事] スマートカーといえば、真っ先に思い浮かぶのは自動運転で...
Deep Instinct の CIO である Carl Froggett 氏は、2024 年に予算...
ChatGPTの誕生により、2023年には大規模言語モデルに基づくAIの波が起こりました。それ以来...
自動化は、業界やプロセスの変革の原動力となり、効率性、コスト効率、エラーの低減を実現しています。 2...
人工知能(AI)は現在、私たちの家族構造にますます統合されています。さらに、快適性、利便性、安全性、...
数年前までは、アクセス制御は鍵や IC アクセス カードによって行われていたことは誰もが知っています...
この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...
Dataiku と Databricks が発表した新しい共同調査によると、生成型人工知能の急速な導...
農業人口の高齢化と低所得化により、牛による耕作、手作業による移植、手作業による収穫といった伝統的な農...
セリディアンは、無限の労働力を動員する力に焦点を当てた年次経営者調査の結果を発表しました。調査では、...