人工知能がデータアナリストに与える影響

人工知能がデータアナリストに与える影響

セミナーで講演したイエローフィンのCEO、グレン・ラビー氏は、多くのアナリストが自動化や人工知能によって自分たちが置き換えられることを恐れているかもしれないが、データアナリストの役割はビジネスと必要とされるスキルの幅に大きな影響を与えるだろうと主張した。 Yellowfin は、企業がデータを理解できるように支援することを専門とする分析およびビジネス インテリジェンス ソフトウェア企業です。 Rabie はデータと、分析を通じてビジネス パフォーマンスを向上させることに熱心に取り組んでいます。 Yellowfin を設立する前は、ナショナル オーストラリア銀行でシニア e コマース コンサルタントやグローバル従業員セルフサービス マネージャーなど、さまざまな役職を歴任しました。ラビー氏はメルボルン大学で商学修士号を取得しています。

AI、自動化、データ ストーリーテリングを分析分野に導入すると、分析のエンド ユーザーだけでなく、現場で作業する人々にも直接的な影響が及ぶことになります。多くのアナリストは、自動化や人工知能によって自分たちの仕事が置き換えられるのではないかと懸念しているかもしれませんが、データ アナリストの役割はビジネスと必要とされるスキルの幅に大きな影響を与えるだろうと私は考えています。

従来、データ アナリストは、分析用のデータの準備、レポートやダッシュボードの作成、そしてこれらのタスクを使用してデータ内の意味のある変更を手動で検索するなどの日常的で反復的なタスクにかなりの時間を費やしてきました。従来の分析ツールやビジネス インテリジェンス ツールでは、アナリストはデータのあらゆる組み合わせや順列を調査することはできません。興味のあるものを見つけた場合、それが統計的に関連性があり、ビジネスにとって意味があるかどうかをどのように判断するのでしょうか? 自動データ検出を導入すると、これらの問題が解決されます。これにより、洞察の検索に費やす時間が短縮され、アナリストが発見した内容を解釈して価値を付加する時間が増えます。これには、アナリストがビジネスに精通し(データだけでなくビジネスを理解する)、調査結果をより効果的に伝えるためのリテラシー スキルを向上させたストーリーテラーになることが求められます。

今日、データアナリストの役割には、幅広いデータ管理および分析活動が含まれます。これには、データの取得、準備、クリーニング、モデリング、そしてレポートとダッシュボードを作成して意思決定をサポートするためのビジネス向けの分析のカスタマイズが含まれます。これらすべての活動の中で、ビジネスにとって真の価値があるのは、ビジネスに影響を与える重要な変更や傾向を特定し、その情報を解釈してビジネスにどのような影響が及ぶ可能性があるかを判断する活動です。

ビジネスアナリストが直面しているジレンマは、解釈が彼らが行う最も価値のある活動であるにもかかわらず、最も時間を費やす活動ではないということです。ほとんどのデータ アナリストは、実際のデータ分析に時間の 20% しか費やしておらず、データの検索、クリーニング、モデリングなど、ビジネス上のメリットがほとんどないタスクに時間の 80% を費やしています。これは非常に非効率で、ビジネスにあまり価値をもたらしません。

非効率的なのはデータの準備だけではありません。従来のデータ分析および視覚化ツールでは、データの検出に完全に手動のアプローチが必要です。ユーザーは多数のフィールドとフィルターから選択し、パターン、傾向、異常な変化を探すためにデータを細かく分析する必要があります。この手動プロセスは時間がかかり、特に今日のデータが豊富な世界では、人為的なエラーや偏見の影響を受けやすくなります。その結果、ビジネス データの重大な変更を特定することは偶然であり、確実なことではありません。これにより、意思決定に使用するデータを決定しようとしている企業にとってリスクが生じます。

人工知能と自動化は、このパラダイムを根本的に変える可能性を秘めています。分析やビジネス インテリジェンスに適用すると、多くの面倒で時間のかかるプロセスが機械によって完了されます。機械学習を使用してデータの分析、マッチング、クレンジングのプロセスを効率化するスマートなデータ準備により、アナリストが分析用のデータの準備に費やす時間が大幅に短縮されます。これを、データにさまざまな高度なアルゴリズムを適用できる AI 駆動型データ検出と組み合わせることで、データ探索の時間を短縮し、関連するビジネス洞察を明らかにすることができます。

しかし、これらの進歩は AI がデータ アナリストに取って代わることを意味するものではありません。 AI は自動化には最適ですが、根本的な限界があります。機械はシーンを理解できません。組織環境、外部市場要因、顧客動向などの複雑な観点からデータを文脈化できるのは人間だけです。たとえば、競合他社のマーケティング成長に関する逸話的な証拠に基づいて製品売上の下降傾向に意味を見出す能力は、AI が処理できる範囲をはるかに超えていますが、人間にとっては比較的簡単です。

この変化の結果、データ アナリストは、コンテキストの提供やデータの解釈など、機械ではできない作業に多くの時間を費やすことになります。データ アナリストは、主要なビジネス パートナー データ アナリストに昇進し、データ リテラシー スキルを使用して、ビジネスがデータを解釈し、見つかった洞察を文脈化し、そのデータを使用して説得力のあるストーリーを伝えることを支援します。その結果、企業のデータアナリストは、よりビジネスに精通し、スキルを磨く必要があります。

これは、反復的なデータアナリストの仕事がなくなることはないという意味ではありません。データの準備とダッシュボードの構築に主眼を置くデータ アナリストにとっては、その時代がもっと早く到来するでしょう。しかし、組織は、データの意味をより深く理解するためのスキルを持つ人々にさらに依存するようになります。データ アナリストは、仕事の日常的な側面を簡素化する AI 駆動型ツールに頼るようになり、データの解釈やストーリーテリングなどの価値の高い活動に多くの時間を費やせるようになります。その結果、ビジネスに有意義な分析を提供できるようになり、データに基づいたより優れた意思決定が可能になります。

<<:  中国の新世代人工知能レポートが発表:中国はAI論文数で世界一

>>:  企業で文明的な AI を推進するための 6 つのヒント

推薦する

...

モデル融合、ハイブリッド専門家、小規模LLM、2024年のLLMの発展方向を理解するためのいくつかの論文

過去2023年間で、大規模言語モデル(LLM)は潜在力と複雑さの両面で急速に成長しました。 2024...

ホテルは機械学習を使ってどのゲストが立ち上がるかを予測する

現在、主要なOTA(オンライン旅行代理店)プラットフォームは人々の旅行を大幅に容易にしています。ホテ...

5分間の技術講演 | GPU仮想化に関する簡単な講演

パート01 背景1.1 GPU アプリケーションのシナリオGPU (グラフィックス プロセッシング ...

機械学習を学ぶ際に早い段階で知っておくべき3つのこと

私は長年、学界と産業界の両方で機械学習モデリングに取り組んできましたが、Scalable ML で「...

メモリ帯域幅とコンピューティング能力、どちらがディープラーニング実行パフォーマンスの鍵となるのでしょうか?

モデルのハードウェア要件に関して、まず頭に浮かぶのは計算量、つまりディープラーニング モデルがフィー...

...

恥ずかしい! ChatGPT を使用して論文を書いたのですが、生成ボタンを削除するのを忘れました。出版社から「論文を撤回します」と言われました。

それは恥ずかしいですね。物理学の論文でも ChatGPT ボタンがコピーされていました。結果は2か月...

...

機械学習: 具体的なカテゴリーは何ですか?プロジェクトのプロセスはどのようなものですか?

機械学習と人工知能は近年最もホットなキーワードの 1 つであるはずです。今日は機械学習の基礎知識をい...

RadOcc: レンダリング支援蒸留によるクロスモーダル占有知識の学習

原題: Radocc: レンダリング支援蒸留によるクロスモダリティ占有知識の学習論文リンク: htt...

ウルトラマンが解雇されるのは今回が初めてではない! YCを去った人物は「創設者から去るように言われた」

ウルトラマンニウフルが「追い出される」のは初めてではないでしょうか? ? !予想外にも、OpenAI...

顔認識の背後にあるもの:怖いのは技術ではない

[[312730]]以前、AI顔変換ソフトウェアZAOが一夜にして人気を博したことで、サーバーが「満...

スタンフォード大学の人工知能レポート: 今からでも遅くはない

スタンフォード大学は3月3日、2021年人工知能指数レポートを発表しました。その中で、AI関連の学習...

...