顔認識システムの技術的プロセスの分析

顔認識システムの技術的プロセスの分析

顔認識は、顔の特徴に基づいて人物を識別する生体認証技術です。カメラまたはビデオカメラを使用して、顔を含む画像またはビデオ ストリームをキャプチャし、画像内の顔を自動的に検出して追跡し、検出された顔に対して一連の顔関連テクノロジを実行します。これは、一般にポートレート認識または顔認識とも呼ばれます。

[[268928]]

顔認識システムの研究は1960年代に始まり、1980年代以降、コンピュータ技術と光学画像技術の発展とともに改良され、1990年代後半に本格的に一次応用段階に入り、主に米国、ドイツ、日本の技術によって実現されました。顔認識システムの成功の鍵は、最良のコアアルゴリズムを備えているかどうか、認識結果が実用的な認識率と速度を備えているかどうかにあります。「顔認識システム」は、人工知能、機械認識、機械学習、モデル理論、エキスパートシステム、ビデオ画像処理などの複数の専門技術を統合し、中間値処理の理論と実装を組み合わせる必要があります。これは、生体認証の最良の応用です。そのコア技術の実現は、弱い人工知能から強い人工知能への転換を示しています。

[[268929]]

顔認識システムは、主に顔画像の取得と検出、顔画像の前処理、顔画像の特徴抽出、マッチング、認識の 4 つのコンポーネントで構成されています。

顔画像の取得と検出

顔画像の取得: 静止画像、動画像、さまざまな位置、さまざまな表情など、さまざまな顔画像をカメラのレンズを通して撮影できます。ユーザーが取得装置の撮影範囲内にいる場合、取得装置は自動的にユーザーの顔画像を検索して撮影します。

顔検出: 顔検出は、実際には主に顔認識の前処理、つまり画像内の顔の位置とサイズを正確に調整するために使用されます。顔画像には、ヒストグラム特徴、色特徴、テンプレート特徴、構造特徴、ハール特徴など、さまざまなパターン特徴が含まれています。顔検出とは、有用な情報を抽出し、これらの特徴を利用して顔検出を実現することです。

主流の顔検出方法は、上記の特徴に基づいた Adaboost 学習アルゴリズムを使用します。Adaboost アルゴリズムは、いくつかの弱い分類方法を組み合わせて、新しい強力な分類方法を形成する分類方法です。

顔検出プロセスでは、Adaboost アルゴリズムを使用して、顔を最もよく表す長方形の特徴 (弱い分類器) を選択します。弱い分類器は、重み付け投票によって強い分類器に構築されます。次に、トレーニングされた複数の強い分類器が直列に接続されてカスケード分類器が形成され、分類器の検出速度が効果的に向上します。

顔画像の前処理

顔画像の前処理: 顔画像の前処理は、顔検出結果に基づいて画像を処理し、最終的に特徴抽出プロセスを提供するプロセスです。システムによって取得された元の画像は、さまざまな制限やランダムな干渉により、そのまま使用されないことが多く、画像処理の初期段階でグレースケール補正、ノイズフィルタリングなどの前処理を施す必要があります。顔画像の場合、前処理プロセスには主に、光補正、グレースケール変換、ヒストグラム均等化、正規化、幾何学的補正、フィルタリング、顔画像のシャープ化が含まれます。

顔画像の特徴抽出

顔画像の特徴抽出: 顔認識システムで使用できる特徴は、通常、視覚的特徴、ピクセル統計的特徴、顔画像変換係数特徴、顔画像代数的特徴などに分類されます。顔の特徴抽出は、顔の特定の特徴に対して実行されます。顔特徴抽出は顔表現とも呼ばれ、顔の特徴をモデル化するプロセスです。顔の特徴抽出の方法は、知識に基づく表現方法と代数的特徴または統計的学習に基づく表現方法の 2 つのカテゴリにまとめることができます。

知識ベースの表現方法は、主に顔の器官の形状記述とそれらの間の距離特性に基づいて、顔の分類に役立つ特徴データを取得します。その特徴コンポーネントには通常、特徴点間のユークリッド距離、曲率、角度が含まれます。人間の顔は、目、鼻、口、あごなどの部分で構成されています。これらの部分の幾何学的記述とそれらの間の構造的関係は、顔を識別するための重要な特徴として使用できます。これらの特徴は、幾何学的特徴と呼ばれます。知識ベースの顔表現には、主に幾何学的特徴ベースの方法とテンプレートマッチング方法が含まれます。

顔画像のマッチングと認識

顔画像のマッチングと認識: 抽出した顔画像の特徴データをデータベースに保存されている特徴テンプレートと検索し、マッチングします。閾値を設定することで、類似度がこの閾値を超えた場合にマッチング結果を出力します。顔認識とは、識別したい顔の特徴と取得した顔の特徴テンプレートを比較し、類似度に基づいて顔の同一性情報を判断します。このプロセスは、1 対 1 の画像比較プロセスである確認と、1 対多の画像マッチングおよび比較プロセスである認識の 2 つのカテゴリに分けられます。

<<:  ホットマネーの流入が止まると、2019年の人工知能業界の浮き沈みに関する考察

>>:  Web攻撃検出のための機械学習の深層実践

ブログ    
ブログ    

推薦する

新しい研究:ハトは人工知能と同様の方法で問題を解決する

オハイオ州立大学とアイオワ大学の研究者による研究で、ハトは問題を解決する際に人工知能に似た「力ずく」...

...

ICLR 2021 調査ではゲームスキル パッケージについて調査?順序付けられた記憶決定ネットワークは、次のことを達成するのを助けます

[[394114]]木を切る、狩りをする、家を建てるなどの長いゲームビデオを機械に見せるとします。モ...

クイックソートアルゴリズムの実装と最適化

[[385051]]この記事はWeChatの公開アカウント「Beta Learns JAVA」から転...

信頼性の高い人工知能システムのルールをどのように定義し構築するのでしょうか?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

人工知能は人間に取って代わるでしょうか?将来、誰もがスーパーパワーを持つようになると思いますか?

ここ数十年、人類の技術は驚くほど急速に発展してきました。多くの映画、テレビ番組、小説などの影響で、多...

ARMの機能によりIBMの包括的なAI自動化ポートフォリオが強化される

Turbonomic の買収計画により、IBM はビジネスと IT 全体にわたって人工知能の自動化機...

まだ人工知能を理解していないのですね?チューリングに「直接」説明してもらってはいかがでしょうか?

[[335755]]タイムトラベルの超能力を与えられたら、どの歴史上の人物と話をして過去に戻りたい...

...

人工知能技術がホームセキュリティ市場の急速な発展を促進

[[240109]]ホームセキュリティ市場はAIを活用してどのように安全を確保しているのか家庭のセキ...

人工知能はより安全で環境に優しい交通システムの構築に役立つ

人工知能は、運輸業界が直面している多くの複雑な課題を解決するための最適なテクノロジーとなっています。...

人工知能は国家戦略となり、今こそこれらの人々にとって良い機会である

人工知能が私たちの生活に大きな利便性をもたらすことができるのは、その背後に多くの機能があるからです。...

...

研究により、脳外科手術の訓練においてAIが専門のインストラクターよりも優れていることが判明

COVID-19パンデミックは、医療研修に課題と機会をもたらしています。遠隔学習技術は、さまざまな分...

...