Li Mu らによるオープンソースの中国語書籍「Hands-On Deep Learning」に PyTorch バージョンが登場しました。元の本のサンプルコードでも実際のプロジェクトでも、元の MXNet はシームレスに PyTorch コードに変換できます。プロジェクトの作者は、元の本の内容を基本的に変更せずに、MXNet コードを PyTorch に変換しました。DL と PyTorch を学びたい友人は、ぜひ試してみてください。
近年、コンピュータサイエンスの学生、技術者、あるいは長年テクノロジーやインターネット業界で働いてきた他の実務家など、人々のディープラーニングへの関心はかつてないほど高まっています。しかし、言語などの要因により、中国語で書かれた優れたディープラーニングの教科書は少ないです。 以前、アマゾンのチーフサイエンティストである李牧氏らは、ディープラーニングの入門チュートリアル本である「Hands-On Deep Learning」というディープラーニングに関する中国語の本を電子形式でGitHubでオープンソース化していた。その英語版はカリフォルニア大学バークレー校の「ディープラーニング入門(STAT 157)」コースで採用され、Li Muらも2019年にディープラーニングコースを教える際にこのチュートリアルを使用しました。
現在、このプロジェクトはGitHubで11,000以上のスターを獲得しており、電子書籍の中国語版は紙版としてもリリースされています。しかし、この本は素晴らしいのですが、読者の中には Gluon を使用してコードを記述することに慣れていない人もいます。結局のところ、ほとんどのオープンソース プロジェクトは TF または PyTorch で記述されています。これで、本のコンテンツと PyTorch フレームワークを直接組み合わせて、DL をより深く理解できるようになりました。 プロジェクトはどうですか? プロジェクト作成者によると、リポジトリには主に code と docs の 2 つのフォルダーが含まれています。 code フォルダーには、各章の関連する Jupyter Notebook コード (PyTorch ベース) が含まれています。docs フォルダーには、同じく PyTorch ベースのマークダウン形式の書籍「Hands-On Deep Learning」の関連コンテンツが含まれています。 元の本では MXNet フレームワークを使用しているため、ドキュメントの内容は元の本と若干異なる場合がありますが、全体的な内容は同じです。以下は、docs ディレクトリ内のドキュメントです。合計 10 章が含まれています。コンテンツの大部分、つまり第 1 章から第 8 章と第 10 章はすでに完成しています。第 9 章のコンピューター ビジョンのみがまだ完成していません。 実際、新しいプロジェクトのコンテンツ構造と構成は元の本と同じです。上記のドキュメントディレクトリは、基礎知識(第 1 章〜第 3 章)、最新のディープラーニング技術(第 4 章〜第 6 章)、コンピューティングのパフォーマンスとアプリケーション(第 7 章〜第 10 章)の 3 つの部分に分けることができます。以下は、本書の各章のトピックと依存関係です。矢印は、前の章が次の章の理解に役立つことを示しています。 内容に加えて、もう一つの部分は実践的なコードです。本書に付属するコードは基本的に PyTorch に変換されています。元の本と同様に、これも Jupyter Notebook で書かれており、コードとテキストの説明がよりわかりやすく表示されます。 GitHub は Jupyter Notebook をかなりゆっくりと読み込むため、表示するにはローカルにダウンロードするのが最適です。 最後に、「Hands-On Deep Learning」も PyTorch と非常に相性が良く、機械学習やディープラーニングに関する背景知識は必要なく、基本的な数学と Python プログラミングを理解するだけで済みます。 MXNet から PyTorch へ これは直感的ではないと思われるかもしれませんので、2 つの例を通じて、「Deep Learning with Hands on」という本の元のコードと PyTorch バージョンの違いを見てみましょう。リカレントニューラルネットワークを使用して言語モデルを構築するためのコードを抽出すると、元の Gluon と新しい PyTorch バージョンの違いがわかります。 以下は、RNNモデリング言語モデルを使用した原書のコードの一部です(原書6.5章)。主にモデル定義部分を抜粋しました。 上記は、対応する PyTorch コードに書き直すことができます。スタイルは非常に簡潔ですが、まだいくつかの違いがあります。 |
スマート ビルディングの観点から見ると、AI は多くの居住者向けテクノロジーに統合され、建物やキャン...
ケンブリッジ大学の「AIパノラマレポート」2020年版がこのほど正式に発表された。ケンブリッジ大学の...
実際、私たち人間は、そのようなことを心配する必要はありません。科学者は、人工知能が人間の脳のレベルに...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
歴史的に、これらの国や地域は旧植民地帝国によって貧困化しており、ヨーロッパの植民地主義は土地の暴力的...
1. アトラスの概要まず、ナレッジグラフの基本的な概念をいくつか紹介します。 1. ナレッジグラフと...
インテリジェント運転技術の継続的な発展により、私たちの移動方法や交通システムは変化しています。 3D...
この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...
データは人工知能システムを構築するために必要な重要なインフラストラクチャです。データは、AI システ...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
近年、都市化の急速な発展と都市人口の継続的な増加により、都市交通の重要性がますます高まっています。わ...
動画生成AIが狂った!ランウェイとミッドジャーニーは、それぞれが究極の技を駆使して激しい戦いを繰り広...
今日では、顔認識技術は私たちの生活や消費の場面でますます利用されるようになっています。最近、「中国初...