モデルはわずか1MBで、軽量な顔検出モデルはオープンソースであり、その効果は主流のアルゴリズムに劣らない。

モデルはわずか1MBで、軽量な顔検出モデルはオープンソースであり、その効果は主流のアルゴリズムに劣らない。

[[279121]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

AI モデルはますます小さくなり、必要な計算能力もますます弱くなってきていますが、精度は依然として保証されています。

最新の代表例は、GitHub でオープンソース化されたばかりの中国のプロジェクト、超軽量の汎用顔検出モデルです。

プロジェクトの貢献者によると、モデル ファイルのサイズはわずか 1 MB で、計算の複雑さは 320x240 入力に対してわずか 90MFlops です。

もちろん、その効果は業界で現在主流のオープンソース顔検出アルゴリズムに劣るものではなく、むしろそれを上回っています。

超軽量で多用途

このモデルの貢献者はlinzaiで、これはエッジ コンピューティング デバイスまたは低コンピューティング デバイス (ARM 推論など) 向けに設計された、リアルタイムの超軽量ユニバーサル顔検出モデルであると紹介しました。

デフォルトの FP32 精度 (.pth) ファイル サイズは 1.1 MB で、推論フレームワークの int8 量子化サイズは約 300 KB です。

[[279122]]

目標は、ARM を使用して、低コンピューティング デバイスの一般的なシナリオでリアルタイムの顔検出推論を実行することです。同時に、これはモバイル環境 (Android および IOS)、PC 環境 (CPU および GPU) などにも当てはまります。

GitHubプロジェクトページによると、このモデルはUbuntu16.04、Ubuntu18.04、Windows 10、Python3.6、Pytorch1.2、CUDA10.0 + CUDNN7.6などの環境でテストされており、正常な動作を保証できるとのこと。

モデル設計には 2 つのバージョンがあります。1) 合理化されたバックボーンを持ち、わずかに高速なバージョン スリム、2) より高い精度のために修正された RFB モジュールを追加したバージョン RFB です。

また、320x240 と 640x480 の異なる入力解像度で wideface を使用してトレーニングされた事前トレーニング済みモデルも提供されており、さまざまなシナリオでより適切に機能します。

Linzai 氏は、プロジェクト全体に特別な演算子はなく、onnx エクスポートをサポートしているため、移植が容易になると紹介しました。

その効果は、現在主流のオープンソースアルゴリズムに劣らない

[[279123]]

このようなモデルの効果/精度は何ですか?

Linzai 氏は、モデルの精度、速度、シナリオテスト、サイズテストも GitHub プロジェクト ページで公開しました。

出場者は 2 人います。1 つは、OpenCV の中国ウェブサイトのウェブマスターである Yu Shiqi 氏が開発したオープンソースの顔検出アルゴリズムである Libfacedetection です。

もう 1 つは、業界で最も先進的なオープン ソースの顔検出アルゴリズムの 1 つである Retinaface-Mobilenet-0.25 (Mxnet) です。

Widerface データセットのテスト結果は次のとおりです。

基本的に version-slim/version-RFB で最良の結果が得られます。

Raspberry Pi 4B MNN推論テスト時間のテスト結果は次のとおりです。

対照的に、スリム版の速度は劣っていません。

地下鉄の駅、万達広場、オフィスなどのシナリオでテストが実施され、結果からRFBバージョンにも利点があることが示されました。

さらに重要なのは、新しいオープンソース モデルが軽量であることです。

ポータル

このプロジェクトの GitHub ページで、linzai は VOC 形式のトレーニング データセットとトレーニング プロセスを生成する方法、およびこのモデルをより有効に使用する方法についても共有しました。

興味があれば見てみてください〜

<<:  世界トップ10のAIトレーニングチップの包括的なレビュー

>>:  人工知能が普及せず、自動運転に支障?

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

ChatGPTが公式検出ツールを削除、AIテキストは識別できないことを認める

OpenAI は、何の発表もなく、ひっそりと AI テキスト検出ツールをシャットダウンし、ページは直...

ディープラーニングの19の格闘技を見てください。絶滅危惧動物の保護にも役立ちます

絶滅危惧動物を研究する上で最大の課題の一つは、その数を正確に推定することであり、各個体を追跡して詳細...

時間畳み込みネットワーク: 時系列の次の革命?

この投稿では、最近の TCN ベースのソリューションをいくつかレビューします。まず、動き検出のケース...

入社1年目のアルゴリズムエンジニアから新人への手紙

[[271455]]ビッグデータダイジェスト制作出典: towarddatascienceコンピレー...

ICML 優勝者 Lu Yucheng: 分散型機械学習の理論的な限界は何ですか?

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

階段を登るための最小コストを使用するデータ構造とアルゴリズム

[[443068]]最小限のコストで階段を登るLeetCode の問題へのリンク: https://...

AIがKing of GloryやStarCraftをプレイしています...その背後にあるテクノロジーを理解していないのですか?ゲームAIのレビューはこちら

[[437808]]人間とコンピュータのゲームは長い歴史があり、人工知能の主要技術を検証するための主...

...

アコーディオン: HBase メモリ圧縮アルゴリズム

最近では、HBase ベースの製品の読み取り速度と書き込み速度に対する要件がますます高まっています。...

...

OSPFはSPFアルゴリズムを使用してルートを伝播します

SPF アルゴリズムは、各ルータをルートとして使用して、各宛先ルータまでの距離を計算します。各ルータ...

CVPR 自動運転チャレンジで優勝したのはどのようなソリューションでしょうか?

道路は複雑で、車両の種類も多様で、歩行者も密集しています。これが都市部の道路交通の現状であり、自動運...

2022年に注目すべき8つのAIトレンド

1. 5G上のAI 2022年には産業用AIとAI-on-5G IoTアプリケーションが主流になるで...

...

Llama-2+Mistral+MPT=? 複数の異種大規模モデルの融合が驚くべき結果を示す

LLaMA や Mistral などの大規模言語モデルの成功により、大手企業やスタートアップ企業は独...