機械学習エンジニアとデータサイエンティストの違い

機械学習エンジニアとデータサイエンティストの違い

今日では、データ サイエンティストの仕事は非常に一般的になり、機械学習もその中に完全に含まれる可能性があります。

データ サイエンティストと機械学習エンジニアは、現在業界で最も人気のある 2 つの職業です。この記事では、機械学習エンジニアとデータサイエンティストの違いについて説明します。

機械学習とデータサイエンスとは何ですか?

機械学習とは、人工知能を利用して、コンピューターがプログラムなしで学習できるようにすることです。機械学習では、アクセス可能なデータとさまざまなアルゴリズムを使用して機械学習モデルを構築できます。これらのアルゴリズムにより、ソフトウェア アプリケーションはプログラミングなしで結果を予測できます。

データ サイエンスは、データを深く掘り下げて、例、パターン、動作を理解する科学です。簡単に言えば、データ サイエンスとは、アクセス可能なデータから予測や推論を行うことです。この重要な知識は、組織が顧客の行動や関心を理解し、より情報に基づいたビジネス上の意思決定を行うのに役立ちます。

たとえば、Netflix は顧客の視聴パターンを区別することで顧客の好みを理解し、そのデータを活用して自社の Web サイトで新しいシリーズをリリースしています。

データ サイエンティストと機械学習エンジニアとは誰ですか?

機械学習とデータサイエンスの基礎がわかったところで、機械学習エンジニアとデータサイエンティストとはどのような人たちなのか、どのように理解すればよいのでしょうか。

[[318594]]

データサイエンティスト

データ サイエンティストは、組織がデータから貴重な洞察を引き出すのを支援します。データ サイエンティストはデータを分析し、Java などのプログラミング言語を使用してデータ内のパターンを発見できるプログラムを作成します。このデータにより、組織は顧客の行動やエンゲージメント率などを把握できるようになります。

データ サイエンティストは基本的に、AI アプローチの種類を決定し、アルゴリズムをモデル化し、その後テスト用にモデル化する研究に重点を置いています。

機械学習エンジニア

ML エンジニアは、機械学習に明示的に関連する開発活動を実行する他のエンジニアと同様です。彼らは、データ サイエンティストによって特徴付けられたデータ モデルに基づいてアルゴリズムを構築します。

さらに、機械学習エンジニアは、PCを制御できるプログラムを作成する知識も持っています。 ML エンジニアが作成したアルゴリズムの助けにより、マシンは他者からの指示を必要とせずにコマンドを理解できるようになります。

職務内容

次に、機械学習エンジニアやデータサイエンティストが日常的にどのような仕事をしているのか見てみましょう。

データ サイエンティストの職務責任

  1. データサイエンティストの主な責任は、クライアントのビジネスニーズを理解し、ソリューションを見つけることです。
  2. データマイニングを実施して、組織に利益をもたらす重要なデータを抽出できるかどうかを確認します。
  3. 組織を改善するための方法論を見つけることができる
  4. TensorFlowなどのディープラーニングフレームワークを使用してディープラーニングモデルを構築する
  5. さまざまな手法を使用してデータを分析し、チャートやグラフなどを使用してデータを提示します。

機械学習エンジニアの職務責任

  1. 機械学習エンジニアは研究を行い、適切な機械学習アルゴリズムとツールを実装します
  2. ビジネス目標を理解するのに役立つ行動計画を策定する
  3. ビジネスの前提条件に基づいて機械学習アプリケーションを作成する
  4. 分析には既存のMLフレームワークとライブラリを使用し、必要に応じて拡張する
  5. データ品質を確認する

必要なスキル

データサイエンティストに必要なスキル

  • 統計
  • データマイニングとクリーニング
  • データの視覚化
  • 非構造化データ管理戦略
  • RやPythonなどのプログラミング言語
  • SQL データベースを理解する
  • Hadoop、Hive、Pigなどのビッグデータツールを活用する

機械学習エンジニアに必要なスキル

  • ソフトウェアエンジニアリングの基礎
  • 統計モデリング
  • データの評価と監視
  • アルゴリズムの理解と使用
  • 自然言語処理
  • データアーキテクチャ設計
  • テキスト表現戦略

給料

データ サイエンティストや機械学習エンジニアの給与は、職務や国によって異なる場合があります。

データサイエンティスト

Indeed によると、データ サイエンティストの平均年収は 121,018 ドル (米国) です。 Glassdoor によると、データ サイエンティストの平均年収は 11 万ドルです。

機械学習エンジニア

Indeed によると、機械学習エンジニアの平均年収は 140,470 ドル (米国) です。

やっと

ご覧のとおり、両方の職業には多くの共通点があります。それはあなたの興味のある分野と、どのようにキャリアを形成したいかによって異なります。

<<:  Google は、MLM 損失で直接事前トレーニングされた 24 個の小さな BERT モデルをリリースしました。

>>:  チャットボットのアーキテクチャモデルと応答生成メカニズムは何ですか?

ブログ    
ブログ    

推薦する

アルゴリズムの微積分: 面接で目立つための関数微分公式 5 つ

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...

...

...

産業用AIが製造業に革命を起こす5つの方法

人工知能 (AI) は、製造業において総合設備効率 (OEE) と生産時の初回歩留まりを向上させるた...

5 年以内に、8,000 万の仕事が機械に置き換えられるでしょう。インダストリアル インターネットは治療薬でしょうか、それとも毒でしょうか?

時代の発展は常に要求と矛盾の中で発展しています。あらゆる産業革命は発展の力をもたらすだけでなく、大き...

適切な AI データ ストレージを選択するための 6 つの考慮事項

間違ったストレージ AI プラットフォームを採用すると深刻な影響が生じる可能性があるため、製品の選択...

...

AIと拡張現実が職場でどのように進化しているか

[51CTO.com クイック翻訳]職場における支援/拡張現実 (AR) と人工知能 (AI) の潜...

Arthur Bench に基づいて LLM 評価を実施するにはどうすればよいでしょうか?

こんにちは、皆さん。私は Luga です。今日は、人工知能 (AI) エコシステムに関連するテクノロ...

人工知能とは何ですか?米Googleが正式発表!

[[213130]] 1つこれは世界を変える握手です!今日、世界で最も最先端の2つの科学、 人工知...

2022年、ビッグモデルはどこまで行けるでしょうか?

[[442868]]著者: ユン・チャオこの記事は、2021年の業界レビュー、2021年のビッグモ...

中国の人工知能コンピューティングパワーレポート:インターネット産業への投資が最も多く、都市ランキングでは杭州が1位

「中国の人工知能の応用と商業化の探究は世界と同レベルだが、コンピューティングパワー、アルゴリズム技術...

普通のプログラマーがAIを活用する方法

[[187452]]現在、人工知能はますます人気が高まっている分野となっています。普通のプログラマー...

卒業後すぐに年収56万は貰えるんですか?右! Twitterの機械学習の専門家が書いた上級マニュアルをご覧ください

[[210651]]年収10万?プログラマーにとっては、これで十分です。国家統計局が今年上半期に発表...