2020 年に AI テクノロジーはどのような変化をもたらすでしょうか?

2020 年に AI テクノロジーはどのような変化をもたらすでしょうか?

近年、人工知能は頻繁に話題になっていますが、まだ真の実現には程遠い状況です。人工知能技術の開発における主な障害は投資コストであり、これは短期的な収益に影響を及ぼします。そして、適切な時期が来れば、AI に投資する企業は大きな利益を得ることができます。マッキンゼーは最近のレポートで、AI をリードする企業は将来キャッシュフローが 2 倍になると予測しています。

[[319683]]

その証拠は、Googleの親会社であるAlphabetの収益報告書の「その他の賭け」のセクションで見ることができます。たとえば、同社のAIプロジェクトは2018年に33億5000万ドルの損失を出しています。そのうちディープマインドは5億7100万ドルの損失を出し、親会社に14億ドルの負債を抱えた。自動運転プロジェクト「ウェイモ」の評価額は昨年9月に技術的な遅れにより40%下落した。

百度、Facebook、テスラ、アリババ、マイクロソフト、アマゾンなど他の企業も大規模で高額なAIプロジェクトに取り組んでいます。テスラを除いて、上記の他の企業は資金が豊富で、AI プロジェクトに必要な変革コストと設備投資を負担することができます。

テクノロジー大手は AI に多額の投資を行っているが、その恩恵を受ける業界のほとんどはテクノロジー分野そのものではない。 re-work のディープラーニングおよび AI サミットでは、参加した AI エンジニアと幹部が、自らが主導するプロジェクトについて発表し、議論しました。

2020 年に AI テクノロジーはどのような変化をもたらすでしょうか?

1. AIが知らないことを学習させる

より多くのヘルスケア企業が人工知能を使用して精度の向上を目指すにつれて、人間と機械のどちらが医療診断に優れているかという疑問の答えは、今後 10 年間で明らかになるでしょう。

人工知能のスタートアップ企業 Curai は、モデルが知らないことを知っているようにトレーニングし、人間が介入してモデルが未知の病気を誤分類するのを防ぐ方法という問題に取り組んでいます。このアプローチは「ヒューマン・イン・ザ・ループ」と呼ばれます。

2. コールセンターの負担を軽減

ユナイテッドヘルスグループは2017年に3,600万件の電話を受け、そのうち760万件がAIに向けられたものだった。この AI プラットフォームのソリューションには、事前チェック入力と請求キューのディープラーニング、自動音声認識 (ASR) による音声からテキストへの翻訳、自然言語処理 (NLP) の教師なしクラスタリング アルゴリズム、新しい通話パラメータの生成、自動通話転送などが含まれます。

3. 小売大手は人工知能に多額の投資をしている

Walmart Labs、Procter & Gamble、Target などの小売大手もカンファレンスに出席し、小売体験をさらに最適化する計画を紹介しました。おそらくこれらの企業は過去10年間でアマゾンなどの競合他社に重要な領域を奪われたが、現在はテクノロジーと人工知能を慎重に受け入れている。

次のようなショッピング体験を想像してみてください。カートがたくさんあり、レジのチェックアウトカウンターは常に開いており、在庫も十分あります。無人スーパーマーケットを推進するAmazon Goとは異なり、ウォルマートはレジ係の交代よりも在庫管理に重点を置いている。

4. 人工知能はプライバシー権の保護に利用される可能性がある

規制当局やソーシャルメディアのユーザーが、プライバシーを無料サービスと引き換えにすることの公平性に疑問を抱き始めており、プライバシー問題が注目を集めている。ケンブリッジ・アナリティカのスキャンダル発覚から2年が経とうとしている中、他の企業は、ユーザーに関する情報をほとんど必要とせず、ユーザーの好みを分析するだけで、どのようなコンテンツをユーザーに推奨するかをシステムが決定できる強力なAI推奨エンジンを開発している。

コンテンツ推奨エンジンに関しては、Netflix がリーダーです。 Pinterest の複雑な推奨エンジンは、Pinterest プラットフォーム上の何十億もの写真の中から優れた写真をユーザーに提供できます。このプロセスには、クエリの理解、候補画像の生成、ランク付け、ブレンディング、最終的な選択が含まれます。簡単に言えば、発見エンジンはこのようにして選択肢を数十億から数百に絞り込みます。

5. AIアシスタントに備える

今後数年のうちに、ジェスチャーは過去のものとなり、機械とやりとりするよりよい方法が登場し、自動車事故は減少するでしょう。 AI アシスタント技術が完全に成熟すると、私たちが現在モバイル デバイスを操作する方法は、将来の世代に笑われることになるかもしれません。

現在、エコシステムのロックインと AI アシスタントによって生成されるデータは非常に価値があるため、多くの企業がこの分野を占有しようと努力しています。アマゾン、グーグル、フェイスブック、アップルはこの分野で全面戦争を繰り広げるだろう。

<<:  分析とAIがIoTの成長を牽引

>>:  人工知能が製造業を改善する3つの方法

推薦する

AIのダークサイド: AIを信頼できるものにする方法

セキュリティとプライバシーに関する懸念は、AI 導入に対する最大の障壁であり、それには十分な理由があ...

顔認識アプリケーションの境界はどこにあるのでしょうか?

日常生活における新しい技術の普及により、個人情報の漏洩に対する国民の懸念が生じている。顔認識アプリケ...

Cloudera のチーフアーキテクト Doug Cutting が Hadoop と人工知能について語る

[51CTO.com オリジナル記事] Doug Cutting 氏はオープンソース コミュニティに...

人工知能の現状を理解するための12枚の写真

スタンフォード大学の人間中心の AI 研究所 (HAI) は毎年、人工知能の現状をまとめた膨大なデー...

...

OpenAIの従業員が996の勤務スケジュールを公開、ネットユーザー「本当の競争は強制する必要はない」

OpenAI も 996 で動作することが確認されています (doge)。 『Thinking C...

人工知能を客観的に見てみましょう。この記事では、AI が世界を変える 5 つの理由を紹介します。

人工知能 (AI) は、私たちがよく人工知能と呼んでいるものです。これは、コンピューター プログラム...

企業は人工知能の可能性に目がくらんでいるのでしょうか?

多くの企業が AI イニシアチブの導入に意欲的に取り組んでいる一方で、AI が自社のビジネスにどのよ...

AIが小売業の顧客体験に革命を起こす

人工知能はすでに多くの業界に大きな影響を与えています。調査会社IDCの調査によると、2019年の人工...

JVMの基本的なガベージコレクションアルゴリズムについて

この記事は JavaEye ブログからの引用であり、元のタイトルは「JVM チューニングの概要 (パ...

...

人工知能はデータの管理と処理を改善する素晴らしい方法です

初期の AI マシンは不完全であり、明確に定義された指示に従ってのみ動作できました。しかし、コンピュ...

ほんの数行の Python コードで、将来の子供がどのような外見になるかを予測できますか?強力な人工知能

今回はBaidu Smart Cloudの顔認識機能とPythonを組み合わせて実験してみました。結...

...