2020 年のディープラーニングに最適な GPU の概要。どれが最適かを確認してください。

2020 年のディープラーニングに最適な GPU の概要。どれが最適かを確認してください。

ビッグデータダイジェスト制作

出典: lambdalabs

編纂者:張秋月

ディープラーニング モデルが強力になるにつれて、より多くのメモリ領域を占有しますが、多くの GPU にはトレーニングに十分な VRAM がありません。

では、ディープラーニングを始める準備ができたら、どのような GPU が最も適しているのでしょうか? ここでは、ディープラーニング モデルのトレーニングに適した GPU のリストと、それらを横並びで比較します。見てみましょう。

長すぎて読めない

2020 年 2 月現在、以下の GPU で現在のすべての言語モデルと画像モデルをトレーニングできます。

  • RTX 8000: 48GB VRAM、約5,500ドル
  • RTX 6000: 24GB VRAM、約4,000ドル
  • Titan RTX: 24GB VRAM、約2,500ドル

次の GPU は、ほとんどの (ただしすべてではない) モデルをトレーニングできます。

  • RTX 2080 Ti: 11GB VRAM、約1,150ドル
  • GTX 1080 Ti: 11GB VRAM、工場再生品で約800ドル
  • RTX 2080: 8GB VRAM、約720ドル
  • RTX 2070: 8GB VRAM、約500ドル

次の GPU は現在のモデルのトレーニングには適していません。

  • RTX 2060: 6GB VRAM、約359ドル。

この GPU でのトレーニングには比較的小さなバッチ サイズが必要であり、モデルの分布近似が影響を受け、モデルの精度が低下します。

画像モデル

メモリ不足になる前の最大バッチ サイズ:

*GPU にモデルを実行するのに十分なメモリがないことを示します。

パフォーマンス(1秒あたりに処理される画像数):

*GPU にモデルを実行するのに十分なメモリがないことを示します。

言語モデル

メモリ不足になる前の最大バッチ サイズ:

*GPU にモデルを実行するのに十分なメモリがないことを示します。

パフォーマンス:

* GPU にはモデルを実行するのに十分なメモリがありません。

Quadro RTX 8000の結果を使用して正規化されたパフォーマンス

画像モデル:

言語モデル

結論は

  • 言語モデルは、画像モデルよりも大きな GPU メモリの恩恵を受けます。右側の曲線が左側の曲線よりも急であることに注意してください。これは、言語モデルはメモリ サイズによってより制限され、画像モデルは計算能力によってより制限されることを示しています。
  • より大きなバッチ サイズを使用すると CUDA コアが飽和するため、VRAM が大きい GPU の方がパフォーマンスが向上します。
  • VRAM が大きい GPU では、比例して大きなバッチ サイズを実現できます。小学校レベルの数学しか知らない人なら、これが理にかなっていることがわかるでしょう。24 GB の VRAM を搭載した GPU は、8 GB の VRAM を搭載した GPU の 3 倍のバッチを処理できます。
  • 長いシーケンスの言語モデルは、シーケンスの長さの 2 乗で注意が集中するため、他のモデルと比較して不釣り合いに大量のメモリを消費します。

GPU 購入の推奨事項

  • RTX 2060 (6 GB): 空き時間にディープラーニングを探求したい。
  • RTX 2070 または 2080 (8 GB): ディープラーニングに真剣に取り組んでいますが、GPU 予算は 600 ~ 800 ドルです。 8 GB の VRAM はほとんどのモデルに適しています。
  • RTX 2080 Ti (11 GB): ディープラーニングに真剣に取り組んでおり、GPU 予算は約 1,200 ドルです。 RTX 2080 Ti は RTX 2080 よりも約 40% 高速です。
  • Titan RTX および Quadro RTX 6000 (24 GB): 最新モデルを頻繁に使用していますが、RTX 8000 を購入する予算がありません。
  • Quadro RTX 8000 (48 GB): 将来への投資をお考えの場合、または 2020 年の最新かつ最もクールなモデルをお探しの場合。

注記

画像モデル:

言語モデル:

関連レポート: https://lambdalabs.com/blog/choosing-a-gpu-for-deep-learning/

[この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です]

この著者の他の記事を読むにはここをクリックしてください

<<:  Huawei のフルシナリオ AI コンピューティング フレームワーク MindSpore がオープン ソースになりました。

>>:  人工知能は優秀な医師の役割を果たすのでしょうか?

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

人工知能がITおよびAV業界にもたらす変化

【51CTO.com クイック翻訳】 [[425066]] ITおよびAV業界における人工知能IT(...

海洋工学における生成AI:独自のデータセットが不十分なため、実用化が制限されている

現代のコンピューティングは造船や海洋工学における設計および建設プロセスを大幅に改善していますが、限ら...

Microsoft XiaoIceが第7世代にアップグレードされ、ユーザーの権限を強化するアバターフレームワークがリリースされました

[51CTO.comよりオリジナル記事] 8月15日、マイクロソフト(アジア)インターネットエンジニ...

...

LangChain と Pinecone ベクトル データベースを使用してカスタム Q&A アプリケーションを構築する

LangChain、OpenAI、PineconeDB を使用して、任意のデータ ソースから質問応答...

機械学習から最も恩恵を受ける4つの業界

機械学習は、将来性が最も高く、業界に最大のメリットをもたらす AI の分野です。関連レポートによると...

複数の機械学習モデルインスタンスを素早く比較する

導入機械学習プロジェクトに取り組むとき、すべてのデータ サイエンティストが直面しなければならない質問...

2018 年の人工知能の商業化に関する 5 つの洞察

[[252389]]人工知能囲碁プログラム「AlphaGo」が囲碁の世界チャンピオンを破って以来、人...

百度が新製品「小度」を発売、マルチラウンド対話と子供向けモードを追加

昨日の午後、百度は新製品発表会で「小度」スマートスピーカーを発表しました。このスマートスピーカーは百...

...

人気の説明: キャッシュ、キャッシュ アルゴリズム、キャッシュ フレームワークの概要

[[437580]]導入私たちは皆、キャッシュについて聞いたことがあります。キャッシュとは何かと尋ね...

素晴らしい操作です!たった5行のコードで画像認識AIが作れる

この記事では、人工知能の分野、特にコンピューター ビジョンの分野について簡単に紹介し、そこに含まれる...

清華大学と中国人工知能学会が2019年人工知能開発報告書を発表

2019年中国人工知能産業年次大会で「2019年人工知能発展報告書」が発表されました。唐潔教授は、関...

ニューラルネットワークの過剰適合を避ける 5 つのテクニック

この記事では、ニューラル ネットワークをトレーニングするときに過剰適合を回避する 5 つの手法を紹介...

...