Google Brain のディープラーニングと TensorFlow の過去と現在を分析

Google Brain のディープラーニングと TensorFlow の過去と現在を分析

ディープラーニングの歴史において、ニューラルネットワーク方式が有効になり始めたのは1980~1990年以降です。データ量と計算能力の向上により、ディープラーニングのニューラルネットワーク方式の採用により、研究開発において他の方式(画像や音声などの分野)よりも高い精度を実現できるようになりました。 2011 年以前は、ディープラーニング手法によって達成された画像エラー率は 26% でしたが、今日ではこの数値は人間のエラー率 (5%) を上回り、3% に達しています。ディープラーニング手法は現在、Android プラットフォーム、さまざまなアプリ、医薬品研究、Gmail など、Google の製品ラインで広く使用されています。

Google Brain チームはこれまでにどのような成果を上げましたか?

  • 研究面では、さまざまな主要会議で 27 本の論文が発表されました。

  • Google 検索、広告、フォトアルバム、翻訳、Gmail などの製品ラインの統合と最適化を促進します。

  • コミュニティで非常に人気のある TensorFlow などのオープンソース ツールをリリースします。

TensorFlow の開発に関して言えば、最初の出発点は適切なディープラーニング ツールを作成する必要性です。

このツールは次の条件を満たす必要があります。

1. 機械学習の思考とアルゴリズムの表現に適しています。

2. 高い運用効率、アイデアを迅速にテストできる。

3. 互換性が良好で、さまざまなプラットフォームで実験を実行できます。

4. 異なる環境での研究の共有と再現の問題。

5. 製品化に適しています:研究段階から製品応用段階に迅速に移行できます。

要約すると、TF の目標は、機械学習のアイデアを迅速に実験するための一般的なシステムを構築し、このシステムが研究指向と製品指向の両方のシステムであることを保証することです。 ***、このシステムは Google だけのものではなく、オープンソースであり、プラットフォーム上の全員のものとなります。

2015 年 11 月 9 日に TensorFlow の初期バージョンをリリースし、これまでに以下の成果を達成しました。

1. TF には現在 500 人を超えるコード貢献者がいます。

2. リリース以来、12,000 件を超えるコードが提出されています。

3. コードベースのダウンロード数が 100 万回を超える。

4. 多数の学校や商業組織が TF に基づいて研究開発を行っています (バークレー、スタンフォード、OpenAI、Snapchat)。

また、ソフトウェアおよびハードウェア プラットフォームのサポートも継続的に更新しています。データによれば、私たちのツールはすでに GitHub 上で最も人気のあるディープラーニング ツールとなっています。

ディープラーニングは Google にどのような重要な影響を与えましたか?

  • 音声認識では、単語認識のエラー率を少なくとも 30% 削減しました。

  • 深層畳み込みニューラル ネットワークにより、ラベルのない写真を直接検索できるようになります。

  • ストリートビュー写真内のテキストをキャプチャして認識するためにディープラーニング手法を使用します。

  • ディープラーニング手法を使用することで、衛星鳥瞰画像から太陽光発電屋根を取得できます。

  • 医療画像診断では、網膜画像が糖尿病の診断に使用されます。

  • ロボットは機械学習を通じて環境と意味を理解できるようになりました。

  • RankBrian は、Google 検索でのランキング最適化にも使用されます。

  • 受信トレイでは、セマンティック分析によって可能な返信を自動的に推奨します。現在、受信トレイ内の返信の 10% は推奨によって生成され、送信されます。

機械学習の他の分野:

これまで、多くのモデルがゼロからトレーニングされていましたが、これは非常に非効率的でした。ディープラーニング専用に設計されたハードウェアである当社の TPU は、今後 20 か月以内に量産に入る予定です。

私たちの想像では、将来の検索リクエストは次のようになるかもしれません。ディープラーニングとロボット工学に関するすべての文献を見つけて、ドイツ語で要約するのを手伝ってください。

今後3〜5年で、音声認識と意味理解の発展により、ロボットや自動運転車が業界で非常に重要な分野になると思います。

PS: PPT + テキストバージョンを添付します。

ディープラーニングの歴史において、ニューラルネットワーク方式が有効になり始めたのは1980~1990年以降です。データ量と計算能力の向上により、ディープラーニングのニューラルネットワーク方式の採用により、研究開発において他の方式(画像や音声などの分野)よりも高い精度を実現できるようになりました。

[[184084]]

2011 年以前は、ディープラーニング手法によって達成された画像エラー率は 26% でしたが、今日ではこの数値は人間のエラー率 (5%) を上回り、3% に達しています。

Google Brain チームはこれまでにどのような成果を上げましたか?

  • 研究面では、さまざまな主要会議で 27 本の論文が発表されました。

  • Google 検索、広告、フォトアルバム、翻訳、Gmail などの製品ラインの統合と最適化を促進します。

  • コミュニティで非常に人気のある TensorFlow などのオープンソース ツールをリリースします。 TensorFlow の開発に関して言えば、最初の出発点は適切なディープラーニング ツールを作成する必要性です。

このツールは次の条件を満たす必要があります。

  • 機械学習の思考やアルゴリズムの表現に適しています。

  • 高い運用効率により、アイデアを迅速にテストできます。

  • 互換性が良好で、さまざまなプラットフォームで実験を実行できます。

  • 異なる環境での研究の共有と再現の問題。

  • 製品化に適しています:研究段階から製品応用段階に迅速に移行できます。

要約すると、TF の目標は、機械学習のアイデアを迅速に実験するための一般的なシステムを構築し、このシステムが研究指向と製品指向の両方のシステムであることを保証することです。 ***、このシステムは Google だけのものではなく、オープンソースであり、プラットフォーム上の全員のものとなります。

2015 年 11 月 9 日に TensorFlow の初期バージョンをリリースし、これまでに以下の成果を達成しました。

  • TF には現在 500 人を超えるコード貢献者がいます。

  • リリース以来、12,000 件を超えるコードコミットが行われています。

  • コードライブラリのダウンロード数は 100 万回を超えています。

  • 多数の学校や商業組織が TF に基づいて研究開発を行っています (バークレー、スタンフォード、OpenAI、Snapchat)。

また、ソフトウェアおよびハードウェア プラットフォームのサポートも継続的に更新しています。データによれば、私たちのツールはすでに GitHub 上で最も人気のあるディープラーニング ツールとなっています。

ディープラーニングは Google にどのような重要な影響を与えましたか?

音声認識では、単語認識のエラー率を少なくとも 30% 削減しました。

深層畳み込みニューラル ネットワークにより、ラベルのない写真を直接検索できるようになります。

[[184085]]

ストリートビュー写真内のテキストをキャプチャして認識するためにディープラーニング手法を使用します。

ディープラーニング手法を使用することで、衛星鳥瞰画像から太陽光発電屋根を取得できます。

医療画像診断では、網膜画像が糖尿病の診断に使用されます。

ロボットは機械学習を使用してコンテキストとセマンティクスを理解できるようになりました。RankBrian は、Google 検索のランキングを最適化するためにも使用されます。

受信トレイでは、セマンティック分析によって可能な返信を自動的に推奨します。現在、受信トレイ内の返信の 10% は推奨によって生成され、送信されます。

機械学習の他の分野:

  • これまで、多くのモデルがゼロからトレーニングされていましたが、これは非常に非効率的でした。当社はxxx方式でこの問題を解決したいと考えています。当社のTPUは20か月以内に量産段階に入る予定です。

  • 私たちの想像では、将来の検索リクエストは次のようになるかもしれません。ディープラーニングとロボット工学に関するすべての文献を見つけて、ドイツ語で要約するのを手伝ってください。

  • 今後3〜5年で、音声認識と意味理解の発展により、ロボットや自動運転車が業界で非常に重要な分野になると思います。

<<:  PyTorch と TensorFlow のどちらが優れていますか?最前線の開発者の声

>>:  張衛斌:金融ビッグデータリスク管理モデリングは単なるデータとアルゴリズム以上のもの

ブログ    

推薦する

あなたは人工知能(AI)を本当に理解していますか?将来、人工知能によって多くの人が失業することになるのでしょうか?

[[286906]]人工知能 (AI) は、通常は人間の思考を必要とするタスクを実行できるインテリ...

マイクロソフト、Canary チャネルの Windows Terminal ユーザーに AI チャット エクスペリエンスを提供

11月18日、マイクロソフトはWindows Terminal AIエクスペリエンスをオープンソース...

生成AIを使用して学生のイノベーションを促進する

今年も新学期がやってきましたが、教育者は AI テクノロジーの爆発的な進歩によって大きな倫理的プレッ...

車をコントロールするスマートグラス? FacebookとBMWが「トラブルを起こす」ために提携

海外メディアの報道によると、Facebook(現在はMetaに改名)は、ARとAIアシスタンスをサポ...

サイバーセキュリティにおける人工知能技術の役割

次世代のサイバーセキュリティの脅威には、新しい予期しない攻撃に迅速に対応できる、俊敏でインテリジェン...

...

...

...

並列コンピューティングの量子化モデルとディープラーニングエンジンへの応用

この世で唯一負けない武術はスピードだ。ディープラーニング モデルをより速くトレーニングする方法は、常...

AI機能をエッジに拡張する方法: ストレージが基盤となる

[[270991]]人工知能技術の復活は、ここ数年の IT に代表される計算能力の大幅な向上が主な要...

2021 年の人工知能の 4 つのビジネス アプリケーション

[[409268]] [51CTO.com クイック翻訳]人工知能は万能の機械として描かれることが多...

...

調査:消費者の68%がスマート家電がプライベートな会話を盗聴できると考えている

PCMag が調査を実施したところ、ユーザーの 68% が、さまざまなスマートホーム製品が知らないう...

データサイエンスと人工知能はヘルスケア業界をどのように変えるのでしょうか?

データサイエンス、機械学習、人工知能は、ヘルスケア業界に大きな変革をもたらす可能性があります。このイ...

「無人運転」について、投資界の大物が4つの大きな予測を示した

編集者注: Chentao CapitalのエグゼクティブゼネラルマネージャーであるHe Xiong...