あなたはキング・オブ・グローリーをプレイしていますが、誰かがiPhoneを使ってニューラルネットワークをトレーニングしています

あなたはキング・オブ・グローリーをプレイしていますが、誰かがiPhoneを使ってニューラルネットワークをトレーニングしています

知っていましたか? LeNet 畳み込みニューラル ネットワークは iOS デバイス上で直接トレーニングすることもでき、パフォーマンスもまったく悪くなく、iPhone や iPad を実際の生産性に変えることもできます。

モバイル端末への機械学習の応用は、一般的に次の 2 つの段階に分けられます。第 1 段階はモデルのトレーニングであり、第 2 段階はモデルの展開です。従来のアプローチでは、強力な GPU または TPU でモデルをトレーニングし、一連のモデル圧縮方法を使用して、モバイル デバイスで実行できるモデルに変換し、APP に接続します。 Core ML は主にモデル展開の最終ステップを解決します。開発者に便利なモデル変換ツールを提供し、トレーニング済みのモデルを Core ML タイプのモデル ファイルに簡単に変換して、モデルと APP データ間の相互運用性を実現します。

上記は通常の動作です。しかし、iOSデバイスのコンピューティング性能が向上するにつれて、iPad Proのコンピューティング能力は一般的なラップトップのそれを上回るという噂もあります。その後、「勇敢な人」が現れ、iOS デバイス上で直接ニューラル ネットワークをトレーニングできるプロジェクトをオープンソース化しました。

プロジェクト作成者は、macOS、iOS シミュレーター、実際の iOS デバイスでテストしました。 60,000 MNIST サンプルで 10 エポックのトレーニングを行いました。モデル アーキテクチャとトレーニング パラメータがまったく同じという前提で、Core ML を使用して iPhone 11 でトレーニングすると約 248 秒、TensorFlow 2.0 (CPU のみ使用) を使用して i7 MacBook Pro でトレーニングすると 158 秒かかりますが、精度は 0.98 を超えています。

もちろん、248 秒と 158 秒の間にはまだ大きな差がありますが、この実験の目的は速度を比較することではなく、モバイル デバイスやウェアラブル デバイスを使用したローカル トレーニングの実現可能性を探ることです。これらのデバイス内のデータは機密性が高くプライバシーに関わることが多く、ローカル トレーニングの方がセキュリティを強化できるためです。

プロジェクトアドレス: https://github.com/JacopoMangiavacchi/MNIST-CoreML-Training

MNISTデータセット

この記事では、MNIST データセットを使用して画像分類モデルを展開する方法を紹介します。この Core ML モデルは、事前に他の ML フレームワークでトレーニングする必要がなく、iOS デバイス上で直接トレーニングされる点が注目に値します。

ここで著者は非常に有名なデータセット、MNIST 手書き数字データセットを使用しました。 60,000 個のトレーニング サンプルと 10,000 個のテスト サンプルが提供され、それらはすべて 0 から 9 までの手書きの数字の 28 x 28 の白黒画像です。

LeNet CNN アーキテクチャ

CNN の詳細と利点を理解したい場合は、LeNet アーキテクチャが適切な出発点となります。 LeNet CNN + MNIST データセットの組み合わせは、機械学習の「トレーニング」の標準的な組み合わせであり、ディープラーニング画像分類の「Hello, World」にほぼ相当します。

この投稿では、iOS デバイス上で直接、MNIST データセット用の LeNet CNN モデルを構築およびトレーニングする方法に焦点を当てています。次に、研究者らはこれを、TensorFlow などの有名な ML フレームワークに基づく従来の「Python」実装と比較します。

Swift で Core ML トレーニング用のデータを準備する

Core ML で LeNet CNN ネットワークを作成してトレーニングする方法について説明する前に、まず MNIST トレーニング データを準備して Core ML 実行に適切にバッチ処理できるようにする方法を見てみましょう。

次の Swift コードでは、MNIST データセット専用のトレーニング データのバッチが用意されており、各画像の「ピクセル」値を、初期範囲の 0 ~ 255 から「理解可能な」 0 ~ 1 の範囲に単純に正規化します。

Core ML モデル (CNN) トレーニングの準備

トレーニング データのバッチを処理および正規化した後、SwiftCoreMLTools ライブラリを使用して、Swift の CNN Core ML モデルで一連のローカル準備を実行できるようになります。

次の SwiftCoreMLTools DSL 関数ビルダー コードで、同じものが Core ML モデルに渡される方法も確認できます。同時に、損失関数、オプティマイザー、学習率、エポック数、バッチ サイズなどの基本的なトレーニング情報とハイパーパラメータも含まれます。

Adam オプティマイザーは、次のパラメータを使用してニューラル ネットワークをトレーニングするために使用されます。

次のステップは、CNN ネットワークを構築することです。畳み込み層、活性化層、プーリング層は次のように定義されます。

次に、前と同じ畳み込み、アクティベーション、プーリング操作のセットを使用して、Flatten レイヤーを入力し、Softmax を使用して 2 つの完全に接続されたレイヤーの後の結果を出力します。

結果として得られたCNNモデル

今構築した Core ML モデルには、2 つの畳み込み層と最大プーリングのネストされた層があり、すべてのデータを平坦化した後、隠し層に接続され、最後に Softmax アクティベーション後の結果を出力する完全接続層があります。

ベースライン TensorFlow 2.0 モデル

結果、特に実行時間の観点からのトレーニング パフォーマンスをベンチマークするために、著者らは TensorFlow 2.0 を使用して同じ CNN モデルの正確なコピーを再作成しました。

以下の Python コードは、TF 内の各レイヤーの同じモデル アーキテクチャと出力形状を示しています。

レイヤー、レイヤーの形状、畳み込みフィルター、プーリング サイズが、SwiftCoreMLTools ライブラリを使用してデバイス上で作成された Core ML モデルとまったく同じであることがわかります。

比較結果

トレーニング実行時間のパフォーマンスを見る前に、まず、Core ML モデルと TensorFlow モデルの両方が、同じ 10,000 個のテスト サンプル画像に対して、同じエポック数 (10)、同じハイパーパラメータ、非常に類似した精度メトリックでトレーニングされていることを確認します。

以下の Python コードからわかるように、TensorFlow モデルは Adam オプティマイザーとカテゴリクロスエントロピー損失関数を使用してトレーニングされており、テストケースの最終的な精度結果は 0.98 を超えています。

Core MLモデルの結果が下図の通りです。TensorFlowと同じオプティマイザー、損失関数、トレーニングセット、テストセットを使用しています。認識精度も0.98を超えていることがわかります。

<<:  12 のシナリオ アプリケーション、100 を超えるアルゴリズム、AI はどのようにして経済を征服するのか?

>>:  今後 20 年以内に、完全自動運転のコネクテッドカーが登場するでしょうか?

推薦する

...

...

Amazon Lexについて

Amazon Lex は、音声とテキストを使用してあらゆるアプリケーションに会話型インターフェースを...

人工知能を活用して社会問題を解決する方法

人工知能はデータに命を吹き込み、過去のさまざまな目録や調査から収集された膨大なデータから再利用の機会...

...

ビッグデータと人工知能を活用して英語教育の問題を解決する

1. 英語教育と学習の現状現在、我が国の英語教育は大きな進歩を遂げていますが、依然として我が国の発展...

マイクロソフトが27億パラメータのPhi-2モデルを発表、多くの大規模言語モデルを上回る性能を発揮

マイクロソフトは、Phi-2 と呼ばれる人工知能モデルをリリースしました。このモデルは、その 25 ...

人工知能がスマートな警察活動を可能にする

[[257520]]都市化と経済発展の加速に伴い、我が国の社会保障を構成する要素が拡大し、公安機関の...

東京オリンピックでロボットが美しい風景になる

[[413763]]最近、4年に一度のオリンピックがついに東京で開催されました。フィールドでは、世界...

MIT スタンフォード トランスフォーマーの最新研究: 過剰トレーニングにより、中程度のモデルが構造一般化能力を「発現」できるようになる

人間にとって、文章は階層的です。文の階層構造は表現と理解の両方にとって非常に重要です。しかし、自然言...

TikTok本社は米国に残り、ByteDanceが管理権とコアアルゴリズムを保持する

事情に詳しい関係者らは、米政府に提出した提案に基づき、バイトダンスがティックトックの本社を米国内に維...

AIは信頼の危機にどう対処するか

今後 10 年間で AI が改善する必要がある領域が 1 つあります。それは透明性です。しかし、人工...

...

人々は長い間、運転免許試験に悩まされてきました。自動運転は、その苦しみを緩和できるのでしょうか?

運転するには運転免許証を持っていることが前提条件であり、運転免許証を取得するには運転免許試験を受ける...

プログラマーが夜遅くにPythonでニューラルネットワークを実行し、中学生のようにデスクランプを消す

[[271670]]一度ベッドに入ったら決して起き上がりたくない人にとって、電気を消すことは寝る前の...