畳み込みニューラルネットワークの基礎を1つの記事で学びます。

畳み込みニューラルネットワークの基礎を1つの記事で学びます。

今日は畳み込みニューラル ネットワークについてお話します。畳み込みニューラル ネットワークは、主に、畳み込みニューラル ネットワークの歴史、完全結合層、畳み込み層、プーリング層の 4 つの部分から構成されます。

CNN の正式名称は畳み込みニューラル ネットワークであり、そのプロトタイプは 1998 年に LeCun によって発明された LeNet ネットワーク構造です。

LeNet ネットワーク アーキテクチャ

では、ニューラル ネットワークとは一体何でしょうか?畳み込み層を持つものはすべて畳み込みニューラル ネットワークと呼ぶことができると言えます。

ニューラルネットワークの歴史

1986年: Rumelhart、Hintonらがバックプロパゲーションアルゴリズムを提案した。

1998年: LeCun が BP ニューラル ネットワークに基づいて LeNet ネットワークをトレーニングし、CNN が本格的に始動しました。

2006年: Hinton が科学論文で初めてディープラーニングの概念を提案しました。

2012年:実は、ヒントンが2006年にディープニューラルネットワークを提唱した後、多くの人から疑問視されました。しかし、2012年にヒントンの学生アレックス・クリジェフスキーは、寮でGPUを使用してディープラーニングモデルを開発し、コンピュータービジョンのトップ分野でILSVRC 2012チャンピオンを獲得しました。数百万レベルのImageNetデータセットでは、その効果は従来の方法よりもはるかに優れており、精度率は70%から80%に向上しました。

完全接続層

実際、完全結合層は脳のニューロン構造を模倣しています。次のことがわかります。

出力値 = 入力値 x に重み w をつけて、活性化関数を通した累積結果。正式には:

次に、ニューロンを列に配置し、列を完全に接続して BP ニューラル ネットワークを取得します。

BP ニューラル ネットワーク アルゴリズムには、信号の順方向伝播とエラーの逆方向伝播という 2 つのプロセスが含まれます。つまり、エラー出力は入力から出力に計算され、重みとしきい値は出力から入力に調整されます。

BP ニューラル ネットワークを理解するために例を見てみましょう。

例: BPニューラルネットワークを使用したデジタル認識

たとえば、最初の画像では 0 が示されています。この画像は複数のピクセルで構成されており、各ピクセルには 3 つの RGB チャネルがあります。その後、グレー表示されて 2 番目の画像になり、グレー表示された画像が 2 値化されて 3 番目の画像になります。

次に、画像に対して確率処理を実行します。たとえば、最初のボックスでは、白いブロック/すべてのブロック = 0.2 です。対応する戦略で処理した後、最初の値は 0.2 になります。同様に、上図の右側の行列も得られます。

次に、行列を 1*n 行ベクトルに変換して処理します。この処理された形式により、ニューラル ネットワークの入力処理が改善されます。

ニューラル ネットワークの入力方法がわかったので、数字をより適切に識別するための最終出力はどうあるべきでしょうか?ワンホットエンコーディング!

つまり、それぞれの数字がコードに対応しており、1000000000と入力すると0と判断される、という具合です。

入力と出力ができたので、ニューラル ネットワークを通じてトレーニングすることができます。

まず、入力層のニューロン数を25ノード、出力層を10ノードに設定します。上記の1*nベクトルをBPニューラルネットワークに入力し、隠れ層を通過させて最後に出力層に渡してワンホットエンコーディングします。出力層はソフトマックス活性化関数を通じて各数字の出現確率を取得し、数字を認識できるようにします。

畳み込み層

畳み込み層とは何でしょうか?前回の記事でもお話しましたが、興味のある方は直接確認してみてください。

漫画: 畳み込みニューラル ネットワークにおける畳み込みカーネルとは正確には何ですか?

漫画:畳み込みニューラル ネットワークが画像データの処理に適しているのはなぜですか?

実践スキル | 畳み込みニューラル ネットワークの始め方

畳み込み層の説明で、畳み込みカーネルが境界を越えた場合はどうすればよいのかという質問をしたいと思います。たとえば、次のようになります。

このような行列を想定して、ステップ サイズが 2 の 3*3 スライディング ウィンドウを使用する場合、次の状況にどのように対処すればよいでしょうか。

以下に示すように、Padding を使用して 0 で埋めることができます。

畳み込み演算中、畳み込み演算後の行列のサイズは次の要因によって決まります。

  • 入力画像サイズ W*W
  • フィルターサイズ F*F
  • 歩幅S
  • パディングのピクセル数 P

畳み込み後の行列のサイズは特定のパターンに従うため、一般的な式は次のようになります。

N=(W-F+2P)/S+1

プーリング層

プーリング層はなぜ存在するのでしょうか?現在の入力データは大きすぎて冗長な情報が多数含まれているため、画像マトリックスをダウンサンプリングし、特徴マップに対してスパース処理を実行してデータ計算量を削減する方法を見つける必要があります。次に、MaxPooling ダウンサンプリングを使用して、プーリング層が何であるかを示します。

上図の赤い部分の値は1 1 5 6です。MaxPoolingを使用しているので最大値を取ります。右図の赤い部分はmax(1,1,5,6)=6となり、ダウンサンプリングの結果となります。

最大ダウンサンプリングと同様に、以下に示すように平均ダウンサンプリング レイヤーもあります。

プーリング層をよりよく理解して使用するために、プーリング層の 3 つの特性をまとめました。

  • トレーニングパラメータなし
  • チャネルは変更せず、特徴行列のwとhのみが変更されます。
  • 通常、プール サイズは畳み込みカーネルのストライドと同じです。

今日は、ニューラルネットワークの開発の歴史、全結合層、畳み込み層、プーリング層など、畳み込みニューラルネットワークの全体的なアーキテクチャについてお話します。お読みいただきありがとうございました〜

<<:  教師あり学習、教師なし学習、強化学習とは何ですか?ついに誰かが明らかにした

>>:  人工知能の70年間で、研究者が最も直面したくない痛い教訓は...

ブログ    
ブログ    

推薦する

大規模グラフニューラルネットワークの応用と最新のパラダイムの探究

1. 大規模グラフメモリ/計算問題を解決するための3つのパラダイム2年前に作成したチュートリアルでは...

IoTとAIの相乗効果:予知保全の可能性を解き放つ

モノのインターネット (IoT) と人工知能 (AI) の融合により、産業の風景に革命をもたらす変革...

2021 年に人工知能が最も大きく発展する分野はどれでしょうか?

2021年のAIアプリケーションのハイライト[[438943]] 2021年は世界全体にとって非常...

ガートナー 2019 人工知能成熟サイクルのトレンド

このガートナーのハイプサイクルは、AIが企業に及ぼすさまざまな影響を強調しています。ガートナーの 2...

マッキンゼーの中国人工知能レポートは3つの大きな課題に直面している

BAT の幹部は、先日終了した IT リーダーシップ サミットで人工知能に焦点を当てました。ロビン・...

TensorFlow を使用したコンテキスト チャットボットの実装

日常のチャットでは、文脈が重要です。 TensorFlow を使用してチャットボット フレームワーク...

ディープラーニングの概要: パーセプトロンからディープネットワークまで

近年、人工知能の分野は再び活発化しており、伝統的な学術界に加え、Google、Microsoft、F...

超実用的画像超解像再構成技術の原理と応用

[51CTO.com からのオリジナル記事] コンピューターで何か面白いものを見つけたときにスクリー...

...

...

マスク氏の最新チップ:脳とコンピューターの相互作用に特化し、視覚障害者が「見る」ことを可能にする

自分で認めなさい!マスク氏のニューラリンクはチップを開発している。この技術は「数年以内」にリリースさ...

AI を使って体内最大の臓器を管理すれば、本当にもっと美しくなれるのでしょうか?

皮膚は人体の中で最も大きな器官であるため、写真を撮るときには必ず皮膚の再生というプロセスを経る必要が...

...

コンピューティングパワーのコストが急激に上昇したため、AIスタートアップがGoogleやMicrosoftなどの大手に挑戦することが難しくなった。

2月20日のニュースによると、コンピューティングコストが急騰しているため、人工知能業界の新興企業は...

...