ディープラーニングを使用してビデオから車両速度を推定する

ディープラーニングを使用してビデオから車両速度を推定する

私が解決したい問題は、車にカメラが付いていて、車がどれくらいの速さで走っているのかを知りたいということです。当然ながら、スピードメーターは見ることができず、ビデオクリップそのものしか見ることができません。ここではディープラーニングの魔法が役立つはずです。

データ

2つの異なるビデオがあります。 1つはトレーニング用、もう1つはテスト用です。トレーニング ビデオには 20399 フレームがあり、テスト ビデオには 10797 フレームがあります。ビデオのダウンロードアドレス: https://github.com/commaai/speedchallenge。以下にいくつか例を挙げます。

ビデオのサンプル画像

トレーニング ビデオのラベルは .txt ファイルであり、各行は特定のフレームの速度に対応します。

方法

この問題の最も興味深い部分は、ニューラル ネットワークへの入力がどのようになるかという点です。静止画像だけでは速度を計算することは不可能です。効果的な方法は、2 つ以上の画像を積み重ねるか、LSTM や Transformer のように連続して積み重ねることです。もう 1 つはオプティカルフローを計算するもので、これを使用することにしました。

オプティカルフローとは何でしょうか? 基本的には、2 つの画像間の相対的な動きを示す各ピクセルのベクトルを計算する方法です。素晴らしいコンピューター愛好家向けビデオがあります: https://www.youtube.com/watch?v=4v_keMNROv4 で詳細を確認できます。オプティカルフローを計算するために使用できる「古典的な」コンピュータービジョンアルゴリズムがいくつかありますが、ディープラーニングははるかに改善されています (当然のことですが)。では、SOTA メソッドとは何か、paperswithcode で確認してみましょう。

RAFT は見た目も良く、PyTorch 実装も備えています。元のリポジトリをフォークして、少しシンプルにしました。研修や評価などは必要ありません。私はそれを推論のためだけに使います。

オプティカルフローの計算

推論のために、ネットワークは 2 つの画像を連結し、形状のテンソル (2、image_height、image_width) を予測します。前述したように、画像内の各ピクセルは 2 次元ベクトルに対応します。これらのファイルは実際のトレーニングで使用するため、.npy ファイルとして保存します。オプティカルフロー画像を想像すると次のようになります。

電車

私たちのトレーニングの目的を思い出してください:

オプティカルフロー → モデル → 車両速度推定

私が選んだモデルはEfficientNetです。スケーラビリティが高いのでとても気に入っています。選択できるバージョンは 8 つあり、最大のバージョンである EfficientNet-B7 は依然として非常に優れています。まずは B0 のような小型のモデルから始めて、すべてが正常に動作し、十分な性能の GPU がある場合は、より大きなモデルを選択できます。事前トレーニング済みのネットワーク モデルを簡単にロードするために使用する PyTorch ライブラリもあります: https://github.com/lukemelas/effecentnet-PyTorch [train.ipynb](https://github.com/sharifelfouly/vehicle-speed-estimate)を開くと、トレーニングがどのように機能するかを確認できます。

私の GPU には 6 GB のメモリしかないため、常に B0 から開始して B3 までスケールアップします。トレーニング後、次の結果が得られました (損失は平均二乗誤差です)。

トレーニング損失

検証損失

素晴らしい、すべて正常に動作しているようです。トレーニングと検証の両方の損失が減少しており、ネットワークは過剰適合していません。

結果は次のとおりです。

完璧ではありませんが、いくつかの用途はあります。

要約する

私は通常、機能エンジニアリングの大ファンではありませんが、この場合はかなりうまく機能していると思います。次のステップは、Transformer や LSTM のような、より順次的なものを試すことです。

<<:  AIの分野を深く探究しよう!新しい機能が次々と登場し、携帯電話で包括的なスマート体験を提供します

>>:  2020 年の人工知能におけるトップ 10 の技術進歩

ブログ    
ブログ    

推薦する

従来のデータを超えて、インテリジェンスへの道はどこにあるのでしょうか?

AI がビジネスの世界に導入されたとき、AI は顧客体験に革命をもたらすなど、顧客のニーズをよりよ...

...

...

このマウスはFPSゲームのプレイ方法を自ら学習し、トレーニングの精度はプロのプレイヤーと同等です。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

llama2.mojo は llama2.c より 20% 高速です。最も新しい言語 Mojo が開発者コミュニティを驚かせています

Python が最も人気のある言語であり、C が最も古典的な言語であるとすれば、Mojo にはその最...

AI 時代において、人工知能は企業のリスク監視をどのように強化するのでしょうか?

最近、P2Pプラットフォームが頻繁に崩壊していることから、インターネット金融プラットフォームの長期的...

ディープラーニングがなぜディープラーニングと呼ばれるのかご存知ですか?

これは単純なプッシュです。今日はディープラーニングという名前についてのみお話します。ディープラーニン...

世界トップ13の産業用ロボット専門家

現在、ロボットはさまざまな業界で広く使用され、さまざまな作業に従事しています。これは、ロボットの開発...

...

...

4 大検索大手は人工知能に夢中です。最も有望なのはどれだと思いますか?

近年、世界の科学技術分野で最もホットな言葉は「人工知能」です。グーグル、百度、ヤンデックス、ネイバー...

分析と AI で注意すべき 7 つの致命的な間違い

2017年、『エコノミスト』誌は、データが石油を上回り、世界で最も価値のある資源になったと宣言しまし...

原子力 + AI: 原子力技術の未来を創造するのか?

近年、原子力技術と人工知能(AI)の融合により、原子力AIと呼ばれる強力な相乗効果が生み出されていま...

人工知能とインテリジェント人工知能、AIの開発はデータサポートから切り離せない

AIは半世紀以上もの間、低調でしたが、囲碁の人工知能プログラム、AI茶室、AI+医療、AI+交通など...

...