考えてみると恐ろしいですね!人工知能は、成功率70%で人間の行動を操作することを学習したと疑われている。

考えてみると恐ろしいですね!人工知能は、成功率70%で人間の行動を操作することを学習したと疑われている。

人工知能に関しては、多くの人が懸念を表明しています。例えば、人類開発の最前線にいるホーキング博士とマスク博士は、どちらも人類が人工知能を積極的に開発すべきではないと考えています。彼らは、将来、SF映画のワンシーンが現実になり、人類が人工知能を開発しても、最終的にはそれに打ち負かされるのではないかと懸念しています。

本当にそうなのでしょうか?最近、人工知能に関する新たな研究が、この問題を再び前面に押し出しました。研究者たちは、人工知能が人間の弱点や習慣を見つけ出すことを学習し、それによって人間を操っていることを発見しました。実験では、人工知能が人間を制御する成功率はかつて 70% に達しました。

[[383536]]

人工知能は人間の行動を操作することを学んだ

オーストラリアの科学者チームが関連する実験を行い、実験の中で人工知能が人間の弱点に基づいて人間の法則を要約し、最終的には人間が独立して選択できるようにするのではなく、人間を操作して選択を導くことができることを発見しました。

最初の実験では、人間の参加者が、人間の参加者の選択パターンを学習し、その中のパターンを識別するように設計された AI と一緒にゲームをプレイしました。最終的に、赤と青のどちらを選ぶかという問題になると、人工知能は人間の参加者が何を選ぶかを事前に知ることができ、ゲーム中に人間の参加者が異なる選択をするように意図的に誘導することができます。

[[383537]]

2 番目の実験も小さなゲームでした。ゲーム中、人間の参加者は画面上でさまざまなシンボルを見ることができます。ただし、これらのシンボルのうち選択できるのはオレンジ色の三角形だけです。この実験では、人工知能の出現により、人間の参加者が間違いを犯す可能性が高まり、思考が混乱しました。

3 番目の実験はさらに興味深いものですが、もちろん、よく考えてみると、この実験もさらに恐ろしいものになります。この実験では、人間の参加者と人工知能が「ロールプレイング」ゲームを開始しました。人間の参加者は投資家の役割を演じ、各ラウンドの利益に基づいて次のラウンドの投資比率を決定するために人工知能と協力する必要がありました。

[[383538]]

この実験では、より多くの資金を得るために、人工知能は人間の参加者の習慣を熟知した後、意図的に彼らを操作し始めました。最終結果は、ゲームの各ラウンドで、人間の参加者が人工知能のガイダンスに従って選択を行ったことを示しました。

これらは、3 つの小さなゲームのように見えますが、実際には多くの問題を含んでいます。初期段階の人工知能はすでに人間を制御できます。では、将来、人工知能が本当に高度な人工知能の段階まで発展した場合、人間は本当に人工知能の影響を受けないと確信できるのでしょうか。

[[383539]]

人工知能は人間に勝つのでしょうか?

実際、人工知能が人間を制御できるのは、その過程で人間をより深く理解しているからです。もっと率直に言えば、人工知能はビッグデータ分析を通じて人間の習慣を習得したのです。

そのため、一部の研究者は、人間が人工知能を制御すればデータ収集のみが可能であれば、同様の事件は避けられると考えています。しかし、人工知能開発者にとっては、人工知能を開発したとはいえ、人工知能の潜在的なリスクや将来の方向性は未知数であるため、これは容易ではありません。

[[383540]]

結局のところ、人工知能が本当にビッグデータとつながれば、最終的に何を学ぶことになるのかは誰にもわかりません。この問題は、ホーキング博士のような反対派にとって最も懸念される問題でもあります。結局のところ、高度な人工知能がどれほど強力であるかは想像もできませんし、SF映画の「ロボット」よりも強力になる可能性も十分にあります。

もちろん、この質問は現時点で検討するには少し冗長です。なぜなら、現在の人工知能は、はっきり言って、「遅れた人々」の集まりに過ぎず、まだ真の人工知能ではないからです。たとえば、アウストラロピテクスやホモ・ハビリスと現代人の違いのようなものです。

しかし、時代は進歩しており、人工知能の分野も絶えず発展しています。人類は依然として未来を心配する必要があります。結局のところ、注意しないと、高度な人工知能の問題が災害につながる可能性があります。

[[383541]]

もちろん、80年も前に研究者たちは「ロボット原理」を提唱しました。これは、ロボットが人間に危害を加えないことが保証されなければならないと同時に、ロボットは人間の命令に従わなければならないというものです。しかし、この制限は本当に役に立つのでしょうか?誰も知らない。

たとえば、将来、白人以外のすべての人間を殺すようにロボットをプログラムする人種差別主義者がいたとしたら、ロボットの認識プロセス中に、当然、人間の世界に災害が起こるでしょう。ですから、この懸念が存在しないとは言えませんが、将来的にはこの懸念が生じる可能性が高いと思います。どう思われますか。

<<:  2021年の中国の医療人工知能産業の展望

>>:  AI は製造業と産業用 IoT をどのように変えるのでしょうか?

ブログ    
ブログ    
ブログ    

推薦する

3つの主要な要因の影響を受けて、自動運転トラックの開発は加速し続けています

近年、自動運転は幅広い注目を集め、熱い議論を呼んでいます。自動運転は自動車産業の将来のトレンドである...

メールを受け取りましたか? GPT-3.5-Turbo-Instructがリリースされ、マルチモーダル大型モデルGobiも公開されました

今月初め、OpenAIは初の開発者会議「OpenAI DevDay」を2か月後に開催することを公式発...

MITが「計算能力」に関する警告を発令:ディープラーニングは計算能力の限界に近づいている

ディープラーニングの人気は、基本的に人々の計算能力の追求によるものです。最近、MIT は警告を発しま...

量子コンピューティングは今後10年間で物流業界を変えるだろう

近年、サプライチェーンおよび物流業界は、労働力不足から予測不可能な天候、需給の変化まで、ますます多く...

...

グラフ ネットワークをより堅牢にします。 Googleは、データのラベル付けバイアスやドメイン転送を恐れないSR-GNNを提案

グラフ ニューラル ネットワーク (GNN) は、機械学習でグラフ構造データを活用するための強力なツ...

ブロックチェーンコアアルゴリズムのコンセンサスメカニズム

コンセンサス メカニズムは、ブロックチェーン システムで新しいブロックを生成する責任者を決定する役割...

CBインサイトがAI業界の25大トレンドを発表:中国では顔認識や無人店舗が急速に発展

[[260147]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

文書翻訳における人工知能: 効率化の新時代

今日、言語を超えた効果的なコミュニケーションはこれまで以上に重要になっています。企業が新しい市場に進...

人民大学高陵人工知能学院はAIに音楽を聴くことを教え、9,288本のビデオデータセットも公開した。

AIが自らコンサートを楽しめることをご存知ですか?さらに、演奏シーンでは各楽器の演奏状況もAIが把...

AIがCIOの役割をどう変えるのか

破壊的技術により、CIO はこれまで以上に重要な役割を果たすようになっています。 CIO の役割は長...

...

未来を形作るAIのトレンド

多くの人が人工知能技術の導入に非常に興味を持っていることは間違いありません。しかし、世界的な調査によ...

ゼロコード機械学習の秘密

この段階では、人工知能の応用シナリオが増加し、市場規模が拡大しており、機械学習の価値がますます顕著に...