ビッグデータや人工知能などの新興技術は猛烈な勢いで発展しており、その一因はディープラーニングの驚異的な進歩にあります。 ディープラーニングは、人工ニューラル ネットワークを通じて人間のような学習とロジックを模倣しようとする、より大きな人工機械学習ファミリーの一部です。ディープラーニングの利点は、膨大なデータセットを調査し、人間には不可能な膨大なデータセットに基づいて複雑な意思決定を行えることです。 ディープラーニング モデルは、複雑な意思決定を反復的に実行できる複雑な概念を学習します。これらのシステムは新しいデータをベースライン データと比較し、効果的に学習できるようにします。これらのシステムの精度を向上させるには、より多くのデータを入力することで、より洗練された意思決定基準を確立する必要があります。 当然のことながら、このテクノロジーは、商業的に実行可能になれば、あらゆるビジネス サイロを破壊する可能性があります。現時点では、Market Research Future (MRFR) の最近のレポートによると、ディープラーニング市場は 2023 年までに 174 億ドルの価値に達すると予想されています。ディープラーニングを機械学習、ビッグデータ、サイバーセキュリティなどの分野と組み合わせて応用することで、今日の現代のビジネス環境が再構築されるでしょう。 ビッグデータから AI まで、進化するテクノロジーのほぼすべての分野がディープラーニングの大きな価値の恩恵を受けています。次のセクションでは、人工知能 (AI) と機械学習 (ML) のこの分野が新興テクノロジーの開発にどのように貢献してきたかを詳しく見ていきます。 ビッグデータがディープラーニングの道を広げるディープラーニング モデルは、従来、構造化データと非構造化データに依存して意思決定プロセスを構築します。音声認識とテキスト翻訳では、ビッグデータとこのテクノロジーを組み合わせることで、人間のような特性を持つ、より洗練された音声認識およびテキスト翻訳アプリケーションを構築できます。さらに、コンピューター ビジョン アプリケーションも、ビッグ データとディープラーニングの組み合わせによって進化しました。ここで、コンピューター ビジョン アプリケーションはより人間に近い判断を下すことができ、軍事から医療までさまざまな分野にメリットをもたらします。 最後に、ラベル付け機能とグラフ処理機能が強化され、大量のデータを処理し、ディープラーニング モデルのトレーニングで重要な役割を果たすようになりました。これらの開発は、輸送、医薬品、およびラベル作成やグラフィック デザインに依存するその他の業界に価値をもたらす可能性があります。 ディープラーニングによるサイバーセキュリティの向上サイバーセキュリティにおける大きな進歩の 1 つは、ディープラーニングを有効にした Deep Instinct の応用です。 Deep Instinct は、ディープラーニングを活用し、サーバー、エンドポイント、携帯電話全体の脅威をリアルタイムで検出するモバイルおよびエンドポイント ネットワーク セキュリティ ソリューションを開発しています。このディープラーニング対応テクノロジーは、ディープラーニングアルゴリズムを通じて攻撃を防ぎ、未知の攻撃を予測することができます。有害な攻撃と無害な攻撃を区別し、ネットワーク全体に保護を瞬時に拡張できます。教育、金融サービス、医療の各分野でランサムウェアを識別できるため、高い採用率を誇っています。 人工知能分析人工機械学習の別の分野である人工知能 (AI) は、人間の知性、合理性、個性を模倣する自己認識技術システムの設計を追求する分野です。人工知能は、基本的なチャットボットから洗練されたフルタイムのアシスタントロボットへと進化しました。今日では、最先端の AI システムは、ラベルのおかげで言語を素早く翻訳し、Web 画像を認識できます。この驚異的な成長に伴い、企業組織は現在、最も困難な課題のいくつかを解決するために AI を活用しています。 ディープラーニングは、自律型 AI マシンの学習コンポーネントとして考えることができます。研究者たちは、ディープラーニングのバックエンド学習機能を AI システムに導入することで、がんの治療、安全な自動運転ネットワークの開発、医療のあらゆる側面の進歩など、社会が抱える最大の課題のいくつかを解決できる高度な AI システムを開発したいと考えています。 エッジコンピューティングディープラーニング モデルはエッジ コンピューティングでも役割を果たします。研究者たちは、これらのシステムが機械がさまざまな製品を識別し、産業の自動化を促進するのに役立つ可能性があることを発見した。これらのシステムは、表面の欠陥を解決し、明るさや形状で製品を識別し、人間の介入なしに現場で複雑な検査を実行できます。そうすることで、ディープラーニングを活用したエッジコンピューティングは、人間の介入を最小限に抑えながら、より回復力の高いコンピューティングシステムを効果的に構築できます。 コンピューティングおよびネットワーク機器の使用により、データの配布と保存の負担がエッジ コンピューティングに移行しました。スマート ファクトリー、生体認証、クラウドへの移行の台頭により、エッジ コンピューティングにおけるディープラーニング モデルに大きなチャンスが生まれています。エッジ コンピューティングのこれらのシステムは、さまざまなシミュレーションを通じて IoT 対応デバイスをトレーニングし、人工知能と連携してエッジでインテリジェンスを収集する方法をある程度自動化します。このプロセスでは、ネットワークを仮想化するか、仮想マシンとコンテナを組み合わせてリソース割り当てを最大化し、サービスを分離してコンピューティングを高速化する必要があります。エッジコンピューティングの速度を上げるためには、プライバシー、リスク管理、応答遅延などの問題に対処する必要があります。 今後の展開この魅力的なテクノロジーの開発は遅いですが、テクノロジーが進歩するにつれて、新興テクノロジーに信じられないほどの価値を提供し続けることは間違いありません。 AI、サイバーセキュリティ、ビッグデータなど、ディープラーニングが新興技術の開発を推進し続けるにつれて、さらに驚くべき進歩が見られるようになるでしょう。 |
>>: 物流業界におけるインテリジェント化のトレンドは、倉庫ロボットの将来性を浮き彫りにしています。
最近、アリババAIは常識QA分野の権威あるデータセットであるCommonsenseQAで新たな世界記...
セキュリティシステムといえば、「監視カメラ」や「電子アクセス制御」を思い浮かべる人が多いでしょう。人...
人工知能は私たちの旅行や生活を変えただけでなく、いくつかの専門分野にも影響を与えました。例えば、次に...
ローコードおよびノーコード プラットフォームの爆発的な成長により、個人でも組織でも、従来はコード...
Transforma Insights では、2020 年の大半を、最も優れた詳細な IoT 予測の...
機械学習におけるパフォーマンスを主張するために使用される指標については、ほとんど議論されていません。...
米国移民関税執行局の最近の新しい規制は、アメリカのトップ大学の間で騒動を引き起こしている。ハーバード...
近年、交通と環境に対する要求が継続的に高まっており、わが国の新エネルギー自動車は急速な発展を遂げてい...
[[409182]] 1. K番目に大きいものを見つけるタイトル順序付けられていない整数配列がありま...
携帯電話に写真編集ソフトウェアがインストールされている場合は、その中の「AI ペイント」機能を使用し...
[[311856]]小売業における当社の中核的な経験は、近年ほとんど変わっていません。店舗(またはオ...
1. 現在の状況:ディープラーニングは現在非常に注目されており、あらゆる種類のカンファレンスがそれと...
室温超伝導に新たな進歩はありますか?華南理工大学、中南大学、中国電子科技大学の研究者らは12月19日...
1. 教師なし学習教師なし学習の特徴は、モデルが学習するデータにラベルがないことです。そのため、教師...