人工知能は諸刃の剣です。EUは利益を促進し、害を避けるための規制を導入しました。

人工知能は諸刃の剣です。EUは利益を促進し、害を避けるための規制を導入しました。

近年、交通と環境に対する要求が継続的に高まっており、わが国の新エネルギー自動車は急速な発展を遂げています。国からの継続的な財政補助と配当支援に頼って、わが国の新エネルギー車の販売台数は現在100万台を超えており、販売台数も数年連続で急増しています。しかし、業界の状況が非常に良いときに、充電設備の整備が追いつかないことが、さらなる発展を妨げる「障害」となっている。

[[395635]]

一方では、既存の充電設備は十分に整備されておらず、カバー範囲も限られているため、既存の車両の充電ニーズを満たすことができません。また、充電に伴う不便さにより、新エネルギー車のバッテリー寿命の欠点が拡大し、消費者の自動車購入の選択に深刻な影響を及ぼしています。これを踏まえ、多くの業界メーカーは、上記の問題を解決するために、充電スタンドなどの施設の建設に力を入れたり、バッテリー交換サービスの開発を推進したりして、自動車の充電問題を根本的に解決し始めています。

残念ながら、充電ステーションはいつでも好きなときに設置できるわけではありません。多くの要素が関係しており、政府、不動産、電力網、運営、所有者、ユーザーを総合的に考慮する必要があります。同時に、バッテリー交換サービスはまだ開発の初期段階にあり、充電の問題を短期的に解決することは困難です。では、他に解決策はないのでしょうか? 実際、ここ 2 年間のロボットの発展により、充電ロボットは新しいアイデアになりつつあります。

いわゆる充電ロボットは、充電スタンドと移動ロボットを統合した製品です。このコンセプトは、モバイル充電車両を使用して他の電気自動車を有料で充電し、「ワンクリック充電」サービスを提供しようとしたNIOによって最初に提案されました。その後、テスラはこのコンセプトをさらに発展させ、商用エネルギー貯蔵バッテリーと複数の急速充電スタンドを備えたセミトレーラーを発売し、最初に充電ロボットのプロトタイプを作成しました。

現在、充電ロボットはますます多くの自動車会社に支持されており、新たな開発トレンドとなっています。昨年4月、AIWAYSはモバイル充電ロボットCARLをリリースしました。一方、西安を拠点とするUAI RoboticsとTGOODは共同で独自のモバイル充電ロボットをリリースしました。さらに、少し前には、Envision Technologyも世界初のグリーン充電ロボットMochiをリリースしました...

充電ロボットが、充電問題を解決するために多くの自動車会社に一般的に選ばれるようになった理由は、充電スタンドなどの固定式充電設備と比較して、充電ロボットには多くの大きな利点があるためです。例えば、充電ロボットは自由に移動でき、占有面積が小さく、展開がより柔軟で便利であり、充電操作がより簡単であるなどです。さらに、充電ロボットの応用は、多くの環境要因の影響を受けず、強い適応性と自律性を備えています。

固定式充電スタンドの設置に適さない一部の立体駐車場や遠隔地では、充電ロボットの応用価値は高く、新エネルギー車の充電の不便さや耐久性不足などの問題を効果的に解決できるため、自動車所有者は充電スタンドを積極的に探す必要がなくなり、より便利な充電体験が得られます。将来的には、シェアリングやリースなどのモデルを通じて、充電ロボットが急速に市場に参入し、その商業的展望は計り知れないものとなるでしょう。

もちろん、その前に、充電ロボットは次の 3 つの問題を解決する必要があります。

1つは技術的なものです。充電ロボットは、移動ロボットとエネルギー貯蔵装置の2つの部分に分かれており、前者の部分には非常に高い技術要件があります。移動ロボットは主にAGV、ロボットアーム、視覚カメラなどで構成されているため、これらを利用して完全自動充電操作を行うには、ロボットに優れたナビゲーション計画機能と極めて高い精度要件が必要であり、これは技術のサポートとアップグレードと切り離せないものです。

2つ目はエネルギー貯蔵です。エネルギー貯蔵装置を移動ロボットで輸送するには、その容積と重量が一定の制限を超えてはならないため、エネルギー貯蔵容量は必然的にそれほど大きくはなりません。専門家によると、既存の移動式充電ロボットの一部のエネルギー貯蔵は、基本的に約5台の車両のニーズを満たすことしかできません。さらに、移動式ロボット自体も電力を消費する必要があるため、蓄電量は明らかに不足しており、将来的にさらに改善する必要があります。

3つ目はコストです。充電ロボットの導入・構築コストは高くないが、使用コストはかなり高い。一方では、モビリティの性質上、輸送コストは低くありません。他方では、輸送コストの発生により、当然のことながら、自動車所有者は充電時に通常の充電スタンドよりも高い料金を支払うことになります。これら 2 つの側面に基づいて、モバイル充電スタンドの大規模な導入もコスト圧力に直面しています。将来的にはコスト削減やその他の解決策が必要になるでしょう。

<<:  充電の問題にさよなら。ロボットが新しいアイデアをもたらし、新しいトレンドを生み出す

>>:  ディープフェイクは今回、顔を変えるだけでなく、街そのものを変えてしまった。

ブログ    

推薦する

量子コンピュータ、モノのインターネット、サイバーセキュリティの相互作用

量子コンピュータは多くの産業の運営方法を変えるでしょう。量子コンピューティングは社会に大きな影響を与...

キャピタルグループ: ジェネレーティブAIの未来に向けてどう動員するか

キャピタル グループは、1931 年、大恐慌の真っ只中にカリフォルニア州ロサンゼルスで設立され、現在...

データセンターから発電所まで: 人工知能がエネルギー利用に与える影響

人工知能 (AI) は急速に現代生活に欠かせないものとなり、産業を変革し、私たちの生活、仕事、コミュ...

顔スキャンの時代、顔認識起業家の進むべき道

[[205201]] 9月26日、北京市内の中学校で、顔認証システムで本人確認がされた受験者が模擬試...

...

ローコード自動化が銀行業務をどう変えるか

基本的な当座預金口座の機能に関しては銀行間でほとんど違いがないため、各銀行は顧客にさらに多くの機能を...

普通のプログラマーはどうやって AI を活用するのでしょうか?

[[199775]]現在、人工知能はますます人気が高まっている分野となっています。普通のプログラマ...

ロボットやAIが事故を起こした場合、誰が責任を負うのでしょうか?

[[348005]]自動運転車が歩行者をはねた場合、法的責任を負うのは誰でしょうか?所有者、製造者...

...

99.9%の精度!小園口算は算数の問題をAIで訂正しており、誤り率は小学校教師の10分の1に過ぎない。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

Deeplearning4j: JVM 向けのディープラーニングと ETL

[[410828]]この記事はWeChatの公開アカウント「Java Architecture M...

OpenCV における KMeans アルゴリズムの紹介と応用

私は 51CTO アカデミーの講師、Jia Zhigang です。51CTO アカデミーの「4.20...

AI、ビッグデータ、データサイエンス向けトップ10アルゴリズム

AI は私たちの職業、働き方、そして企業文化を変えています。 AIを活用することで、本当に重要なスキ...

食糧生産・供給システムの改善 — AI が担う時代へ!

[[344152]] 人工知能は私たちの世界を急速に、さらには加速的に変えつつあります。しかし、そ...