清華大学の唐潔氏のチームは、ダル・イーよりも優れた成果を挙げた「中国のAIデザイナー」を作成した。

清華大学の唐潔氏のチームは、ダル・イーよりも優れた成果を挙げた「中国のAIデザイナー」を作成した。

[[402579]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

2021年にOpenAIで最も注目され、最もクリエイティブな製品といえば、Dall Eでしょう。これは、テキストを与えられれば、必要な画像を生成できる「AIデザイナー」です。しかし残念ながら、Dall·E は中国語をサポートしていません。

さて、最近、清華大学のTang Jie氏のチームは、中国語のテキストを画像に変換できる「Dall·Eの中国版」であるCogViewを開発しました。

CogView は、「山を流れる小川」などの現実世界のシーンを生成できます。

「猫豚」など、存在しない仮想のものを作成することもできます。

時々、「悲しい博士課程の学生」のように、少しブラックユーモアもあります。

CogView は現在、任意のテキストを入力してグラフィックに変換できる試用 Web ページも提供しています。これは、いくつかのキーワード変更オプションしか提供していない OpenAI の Dall E とは異なります。

絵画スタイルや衣服のデザインを指定できる

CogView は、テキストから画像を入力するだけでなく、スタイルの学習、超解像度、テキストと画像のランキング、ファッション デザインなど、さまざまな微調整戦略を使用して下流のタスクを処理することもできます。

CogView を使用する場合、さまざまなスタイル制限を追加して、さまざまなペイント効果を生成できます。微調整中は、画像に対応するテキストも「XX風画像」となります。

CogView がデザインした衣服も非常にリアルで、偽りの痕跡もなく、電子商取引の表示ページのように見えます。

原理

CogView は、VQ-VAE トークナイザーの 40 億のパラメータを持つ Transformer です。全体的な構造は次のとおりです。

CogView は GPT モデルを使用して、個別の辞書上のトークン シーケンスを処理します。学習プロセスは 2 つの段階に分割されます。エンコーダーとデコーダーは再構築損失を最小限に抑えるように学習し、単一の GPT はテキストを連結して 2 つの負の対数尤度 (NLL) 損失を最適化します。

その結果、最初のステージは純粋な離散オートエンコーダーに退化し、画像をラベル付きシーケンスに変換する画像トークナイザーとして機能します。2 番目のステージの GPT は、モデリング タスクの大部分を引き受けます。

画像トークナイザーのトレーニングは非常に重要です。最近傍マッピング、ガンベルサンプリング、ソフトマックス近似の 3 つの方法があります。Dall E は 3 番目の方法を使用していますが、CogView の場合、3 つの方法に大きな違いはありません。

CogView のバックボーンは、48 層、40 個のアテンション ヘッド、40 億個のパラメーター、および 2560 の隠し層サイズを持つ単方向トランスフォーマーです。

トレーニング中に、著者らは CogView にオーバーフロー (NaN 損失を特徴とする) とアンダーフロー (発散損失を特徴とする) という 2 つの不安定性を発見し、それらを解決するために PB-Relax と Sandwich-LN を提案しました。

最後に、CogView は MS COCO で最も低い FID を達成し、以前の GAN ベースのモデルや同様の Dall E を上回りました。

手動評価テストでは、CogView が 37.02% の確率で最良として選択され、他の GAN ベースのモデルをはるかに上回り、Ground Truth (59.53%) と競合できるようになりました。

なお、作者はGitHubプロジェクトページを公開していますが、まだコードはありません。興味のある友人は注目して、コードが公開されるのを待ってください。

論文の宛先:
https://arxiv.org/abs/2105.13290

デモを試す:
https://lab.aminer.cn/cogview/index.html

GitHub ページ:
https://github.com/THUDM/CogView

<<:  毎秒400ペタフロップスの計算能力を備えた最速のAIコンピュータが稼働中です。宇宙最大の3Dマップが構築中

>>:  機械学習の次元削減手法で「次元の呪い」を打破する

ブログ    

推薦する

原子力 + AI: 原子力技術の未来を創造するのか?

近年、原子力技術と人工知能(AI)の融合により、原子力AIと呼ばれる強力な相乗効果が生み出されていま...

逆転!清華大学の卒業生の死はグーグルのレイオフとは無関係、家庭内暴力の詳細が明らかに、男性は殺人罪で起訴された

地元警察は、ここ数日話題になっている「グーグルの人員削減により清華大学の夫婦が自殺」事件の詳細を発表...

...

素人でもわかるポピュラーサイエンス:これは自然言語処理と呼ばれるものです

[[208394]] 1. 自然言語処理とは何ですか?簡単に言えば、自然言語処理(NLP)とは、コン...

CPP アルゴリズム問題のための共通コンテナ技術

[[413003]]アルゴリズムの問​​題を解決するときに CPP でよく使用されるコンテナ テクニ...

最大フロー問題の解決における画期的な進歩: 新しいアルゴリズムは「驚くほど高速」

この問題はネットワークフロー理論において非常に基本的なものです。 「新しいアルゴリズムは驚くほど高速...

回答者の約40%が顔認識技術の悪用は改善されたと考えている

データ画像。画像/アンスプラッシュ近年、個人情報保護法などの法律や規制の導入・施行により、我が国はデ...

...

2022年までのビッグモデルの未来を展望し、周志華、唐潔、楊紅霞といったビッグネームはどう考えているのだろうか?

年末から年始にかけて、ビッグモデルの過去を振り返り、ビッグモデルの未来に期待してみましょう。 28日...

...

開発速度が20倍にアップしました! GPT Pilot スター プロジェクトが Github のホット リストに掲載され、AI をゼロから構築

新たなスタープロジェクトが誕生! AI 開発者コンパニオンである GPT Pilot を使用すると、...

ロボットに25分で6つの動作を学習させるトレーニング、バークレーは効率的なロボット操作フレームワークを開発

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

オライリー、2023年ジェネレーティブAIエンタープライズレポートを発表

O’Reilly は、企業における生成 AI の実態について 2,800 人を超える技術専門家を対象...

データサイエンスの分野で働くにはどのようなスキルが必要ですか?

本記事では、海外KDnuggetsフォーラムにおけるSimplilearnの統計結果と、国内有名求人...

まだ AI と機械学習を混同していませんか?まず、AIの6つの注目分野を見てみましょう。

AI の初心者向けに、AI の注目すべき 6 つの分野と、その概要、重要性、現在の使用方法、研究し...