このチュートリアルでは、TensorFlow (Keras API) を使用して、細胞の画像をマラリア感染の有無としてラベル付けするバイナリ分類タスク用のディープラーニング モデルを実装します。 データセットのソース: https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria データセットには2つのフォルダが含まれています
合計27558枚の画像。 このデータセットは、NIH の公式ウェブサイトから取得されています: https://ceb.nlm.nih.gov/repositories/malaria-datasets/ 環境: Kaggle、Tianchi Lab、Gogole Colab のどれでも OK です。 関連モジュールのインポート
形状の異なる画像データの場合、画像の前処理を実行するために OpenCV が必要です。 画像を numpy 配列 (デジタル形式) の形式でグレースケールに変換し、(70x70) の形状にサイズを変更します。
Xの形を確認してください。
X の形状は (27558, 70, 70, 1) です。ここで、27558 は画像データを表し、70*70 はピクセル単位の画像の長さと幅を表します。 さらに、ネットワークの収束を早めるには、データを正規化する必要があります。 sklearn にはいくつかのスケーリング方法があります。たとえば、次のとおりです。 ここで 255 で割るのは、ピクセルが持つことができる最大値が 255 であるためで、スケーリングが適用されると、ピクセルの範囲は 0 から 1 の間になります。
sklearn の train_test_split() メソッドを使用して、データセットをトレーニング セットとテスト セットに分割します。全体のデータの 10% を使用して後で検証します。 構築されたモデルでは、3 つの畳み込み層を追加し、次に層で構成される完全に接続された密な層である Flatten を追加します。
出力はバイナリ(感染しているか感染していないか)なので、出力層の活性化関数としてシグモイド関数を使用します。
トレーニング データセットとその検証分割では 94% の精度が達成されました。 次にevaluate()を使用してテストデータセットでモデルを評価します。
出力は次のようになります
このモデルはテストデータでも94%の精度で正常に動作した。 最後に、モデルを保存して、このすべてを終了します。
【編集者のおすすめ】
|
<<: マッピングドローンは多くの「ファン」を獲得しており、これらの利点は刺激的です
>>: AIイノベーションを奨励する100万ドルの賞金:2021 DIGIXグローバルキャンパスAIアルゴリズムエリートコンペティションが開幕
PyTorch は、ディープラーニング分野で最も人気のあるフレームワークの 1 つです。最初のバージ...
Cheetah Clean Master、Cheetah Browser...Cheetah Mob...
[[118153]]毎年、就職活動の時期になると、どうやって内定を選んだらいいのか、テンセントに行く...
1956年に人工知能の概念が提案されて以来、人工知能と労働市場の関係については議論されてきました。...
人工知能 (AI) には、従来のエンジニアリング システムからヘルスケア、芸術やエンターテイメントの...
9月1日、成都地下鉄全線で「スマート旅客サービスプラットフォーム」がオンラインで開始されました。この...
ディープラーニング技術は複雑で、ゼロから開発するのが難しい場合が多いですが、Microsoft の ...
2021年5月20日、北京中良プロトンネットワーク情報技術有限公司傘下の企業向けデジタルサービスプラ...
人工知能は、幅広い議論を巻き起こすだけでなく、人々に未来への無限の夢を抱かせるようなさまざまなテクノ...
今年、自動運転はまだ大規模な商用化には至っていないが、利益の偏在により廃業する企業、継続が困難となり...